期刊文献+

BP神经网络优化荷叶黄酮提取工艺及黄酮稳定性实验的探索 被引量:6

Optimization of extraction technology of total flavonoids from lotus leaf by BP neural network and exploration of flavonoids stability
下载PDF
导出
摘要 以荷叶为原料,采用Box-Behnken响应面设计与神经网络模型相结合的方法优化超声-渗漉协同作用浸提荷叶总黄酮的工艺条件并探讨了影响荷叶黄酮稳定性的因素。结果表明,优化后的提取工艺为乙醇浓度60.2%,料液比1∶39.7g/mL,超声时间80min,渗漉速度3mL/min,渗漉液收集体积为9.2倍,此条件下总黄酮得率为6.87%,与模型预测相对误差仅为1.89%,表明神经网络优化荷叶黄酮提取工艺具有很好的可靠性和实用价值。荷叶黄酮提取液在低温、微酸、避光条件下较稳定,β-环糊精、VC、D-葡萄糖酸内酯均对其均有一定的保护作用。 Box-Behnken response surface design coupled with neural network model was employed as a new method to optimize the conditions for ultrasonic-diacolation-assisted extraction of total fiavonoids from lotus leaf. And the paper also studied the stability of flavonoids. The optimal extraction conditions were ethanol concentration of 60.2%,material-to-liquid ratio of 1:39.7,extraction duration of 80rain,and collecting 9.2 folds of percolate at a rate of 3mL/min. The extraction yield of total flavonoids was 6.87% ,the deviation between observed and predicted values of yield was 1.89% ,which indicated the reliability and practicability in the optimized conditions. It also suggested that the extracted total fiavonoids were more stable at low temperature, low pH value and in dark condition,15-cyclodextrin,vitamin C or D-glucose acid lactone also improved the stability of the total flavonoids.
出处 《食品工业科技》 CAS CSCD 北大核心 2014年第16期274-280,共7页 Science and Technology of Food Industry
基金 国家自然科研究学基金(81102132 31171684) 四川省科技支撑计划(2010NZ0093) 酿酒生物技术及应用四川省重点实验室开放基金(NJ2011-03) 重庆大学大型仪器设备开放基金
关键词 荷叶 黄酮 响应面法 稳定性 lotus leaf flavonoids response surface design stability
  • 相关文献

参考文献17

  • 1Francisco Perez-Vizcaino, Juan Duarte. Flavonols and cardiovascular disease[J]. Molecular Aspects of Medicine, 2010, 31 : 478-494.
  • 2Fufeng Chen,Hui Xiong,Jianxia Wang,et al. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats[J]. Journal of Ethnopharmacology, 2013,149.729-736.
  • 3Ze-Mu Wang,Zhen-Lin Nie, Bo Zhou,et al. Flavonols intake and the risk of coronary heart disease:a meta-analysis of cohort studies[J]. Atherosclerosis, 2012,222 : 270-273.
  • 4Desai K M,Survase S A,Saudagar P S,et al. Comparison of artificial neural network(ANN ) and response surface methodology (RSM) in fermentation media optimization:Case study of fermentative production of scleroglucaan [J]. Biochemical Engineering Journal, 2008,41 ( 3 ) : 266-273.
  • 5张德丰.MATLAB神经网络应用设计[M].北京:机栩工业出版社,2008:20-30.
  • 6Yu S W, Guo X F, Zhu K J, et al. A neuro-fuzzy GA-BP method of seismic reservoir fuzzy rules extraction. ExpertSystems with Applications, 2010,37( 3 ) : 2037-2042.
  • 7刘斌,马海乐,李树君,李文,辛君伟.紫菜降压肽酶膜耦合反应制备工艺RBF神经网络优化[J].农业机械学报,2010,41(5):120-125. 被引量:8
  • 8黄万有,李德涛,屈小娟,刘书成,郝记明,张静.人工神经网络优化军曹鱼内脏鱼油酶法提取工艺参数[J].食品工业科技,2013,34(7):173-177. 被引量:7
  • 9吴淦洲,张玲,王伟城.BP神经网络在沙姜总黄酮提取中的应用[J].计算机与应用化学,2013,30(4):435-438. 被引量:3
  • 10邓胜国,邓泽元,范亚苇.紫外分光光度法测定荷叶总黄酮含量[J].南昌大学学报(理科版),2008,32(2):148-150. 被引量:19

二级参考文献111

共引文献127

同被引文献133

引证文献6

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部