期刊文献+

基于相变存储器的存储系统与技术综述 被引量:21

Summary of Storage System and Technology Based on Phase Change Memory
下载PDF
导出
摘要 随着处理器和存储器之间性能差距的不断增大,"存储墙"问题日益突出,但传统DRAM器件的集成度已接近极限,能耗问题也已成为瓶颈,如何设计扎实有效的存储架构解决存储墙问题已成为必须面对的挑战.近年来,以相变存储器(phase change memory,PCM)为代表的新型存储器件因其高集成度、低功耗的特点而受到了国内外研究者的广泛关注.特别地,相变存储器因其非易失性及字节寻址的特性而同时具备主存和外存的特点,在其影响下,主存和外存之间的界限正在变得模糊,将对未来的存储体系结构带来重大变化.重点讨论了基于PCM构建主存的结构,分析了其构建主存中的写优化技术、磨损均衡技术、硬件纠错技术、坏块重用技术、软件优化等关键问题,然后讨论了PCM在外存储系统的应用研究以及其对外存储体系结构和系统设计带来的影响.最后给出了PCM在存储系统中的应用研究展望. With the increasing of performance gap between CPU and memory, the "memory wall" problem becomes more and more prominent. In order to bridge the gap, many DRAM based solutions are proposed. However, the DRAM is approaching the bottleneck in density and energy cost. How to design a practical memory architecture to settle this problem is becoming more and more prominent. Recent years, phase change memory (PCM) has gained great attention of researchers from domestic and abroad for its high density and low energy cost. And especially, its non-volatility and byte addressable feature are blurring the difference of memory and storage, which can bring significant changes for future memory architecture. This paper mainly discusses the architecture of main memory based on PCM and related technology about tolerating slow writes, ware leveling, erasure codes, reuses of failed blocks and software optimizing. And this paper also discusses the application of PCM in storage system and the affects on the design of storage architecture and computer system. After the discussion, the research works are summarized and the possible research directions are pointed out.
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第8期1647-1662,共16页 Journal of Computer Research and Development
基金 国家杰出青年科学基金项目(60925006) 国家"八六三"高技术研究发展计划基金项目(2012AA011003)
关键词 新型存储器件 非易失存储器 相变存储器 主存 外存 new storage device non-volatile memory PCM main memory external storage
  • 相关文献

参考文献41

  • 1Nahas J, Andre T, Subramanian C, et al. A 4Mb 0.18m 1T1MTJ toggle MRAM memory [C]//Proc of IEEE Int Conf on Solid-State Circuits ( ISSCC 2004 ). Piscataway, NJ : IEEE, 2004: 44-512.
  • 2Lee B C, Ipek E, Mutlu O, et al. Architecting phase change memory as a scalable dram alternative[J]. ACM SIGARCH Computer Architecture News, 2009, 37(3): 2-13.
  • 3Bedesehi F, Resta C, Khouri O, et al. An 8Mb demonstrator for high-density 1.8 V phase-change memories [C]//Proc of IEEE Symp on VLSI Circuits, Digest of Technical Papers. Piseataway, NJ: IEEE, 2004:442-445.
  • 4Burr G W, Kurdi B N, Scott J C, et al. Overview of candidate device technologies for storage class memory [J]. IBM Journal of Research and Development, 2008, 52(4): 449-464.
  • 5Qureshi M K, Gurumurthi S, Rajendran B. Phase change memory: From devices to systems [J]. Synthesis Lectures on Computer Architecture, 2011, 6(4): 1-134.
  • 6Qureshi M K, Srinivasan V, Rivers J A. Scalable high performance main memory system using phase-change memory technology [J]. ACM SIGARCH Computer Architecture News, 2009, 37(3): 24-33.
  • 7Chen S, Gibbons P B, Nath S. Rethinking database algorithms for phase change memory [C/OL] //Proc of the 5th Biennial Conf on Innovative Data Systems Research (CIDR 2011). 2011: 21-31. [2013-03-10]. http://www. cidrdb. org/cidr2011/Papers/CIDR11_Paper3. pdf.
  • 8Lee B C, Ipek E, Mutlu O, et al. Architecting phase change memory as a scalabie dram alternative[J]. ACM SIGARCH Computer Architecture News, 2009, 37(3): 2-13.
  • 9Bheda R A. Energy efficient Phase Change Memory based main memory for future high performance systems [C] //Proc of IEEE on Int Green Computing Conf and Workshops (IGCC 2011). Piseataway, NJ: IEEE, 2011:1-8.
  • 10Lee B C, Ipek E, Mutlu O, et al. Phase change memory architecture and the quest for scalability [J]. Communications of the ACM, 2010, 53(7): 99-106.

同被引文献238

  • 1陈卓,熊劲,马灿.基于SSD的机群文件系统元数据存储系统[J].计算机研究与发展,2012,49(S1):269-275. 被引量:8
  • 2韩秀峰.一种新型磁随机存取存储器原理型器件的设计与研制[J].科学通报,2007,52(10):1220-1220. 被引量:5
  • 3Intel. Intel Xeon Processor E5 2699 v3 [OL]. [2014-12 -15]. http://ark, intel, com/products/81061.
  • 4Vardhan A, Srikant Y. Exploiting critical data regions to reduce data cache energy consumption [C] //Proc of the 17th Int Workshop on Software and Compilers for Embedded Systems. New York.- ACM, 2013~ 69-78.
  • 5Chang M, Rosenfeld P, Lu S, et al. Technology comparison for large last level caches (L3Cs) : Lowqeakage SRAM, low write energy STT-RAM, and refresh optimized eDRAM [C] //Proc of the 19th Int Syrup on High Performance Computer Architecture (HPCA2013). Piscataway, NJ: IEEE, 2013: 143-154.
  • 6Wu Xiaoxia, Li Jian, Zhang Lixin, et al. Hybrid cache architecture with disparate memory technologies [C] //Proc of the 36th Annual lnt Symp on Computer Architecture (ISCA 2009). New York: ACM, 2009:34-45.
  • 7Chen Yuting, Cong Jason, Huang Hut, et al. Dynamically reconfigurable hybrid cache: An energy-efficient last level cache design[C] //Proc of the Conf on Design, Automation and Test in Europe. Piscataway, NJ: IEEE, 2012:12-16.
  • 8Li Yong, Chen Yiran, Jones A. A software approach for combating asymmetries of non volatile memories [C] //Proc of the 2012 Ac'M/1EEE Int Symp on Low Power Electronics and Design (ISLPED 2012). New York: ACM, 2012: 191- 196.
  • 9Venkatesan R, Kozhikkottu V, Augustine C, et al. TapeCache: A high density, energy efficient cache based on domain wall memory [C] //Proc of the 2012 ACM/IEEE Int Symp on Low Power Electronics and Design (ISLPED 2012). New York~ ACM, 2012:185-190.
  • 10Kryder M, Chang S. After hard drives--What comes next? [J]. IEEETranson Magnetics, 2009, 10(45): 3406-3413.

引证文献21

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部