期刊文献+

弱标签环境下基于语义邻域学习的图像标注 被引量:4

Image Annotation by Semantic Neighborhood Learning from Weakly Labeled Dataset
下载PDF
导出
摘要 图像语义自动标注是实现图像语义检索与管理的关键,是具有挑战性的研究课题.传统的图像标注方法需要具有完整、准确标签的数据集才能取得较好的标注性能.然而,在现实应用中获得数据的标签往往是不准确、不完整的,并且标签分布不均衡.对于Web图像和社会化图像尤其如此.为了更好地利用这些弱标签样本,提出了一种基于语义邻域学习的图像自动标注方法(semantic neighborhood learning from weakly labeled image,SNLWL).首先在邻域标签损失误差最小化意义下,填充训练集样本标签.通过递进式的邻域选择过程,保证建立的语义一致邻域内样本具有全局相似性、部分相关性和语义一致性,并且语义标签分布平衡.在邻域标签重构误差最小化意义下进行标签预测,降低噪声标签对性能的影响.多个数据集上的实验结果表明,与已知的具有较好标注效果的方法相比,此方法更适用于处理弱标签数据集,标准评测集上的测试也表明了此方法的有效性. With the advance of Web technology, image sharing has become much easier than ever before. Automatic image annotation, which can predict relevant labels for images, is becoming more and more important. Traditional image annotation methods usually require a large number of complete, accurate labeled data to obtain good annotation performance. However, since obtaining weak labeled training data is often much easier and costs less efforts than obtaining a large amount of fully labeled training data, image labels are often incomplete and inaccurate in real world environment. In addition, different labels usually have large frequency differences. To effectively harness these weakly labeled images, in this paper, an automatic image annotation approach based on semantic neighborhood learning (SNLWL) is proposed. The missing labels are replenished by minimizing the reweighted error functions on training data. Then, the semantic neighborhood is obtained by a progressive neighborhood construction approach. We incorporate label completeness, global similarity, conceptual similarity, and partly correlation into the stage. In addition, an effective label inference strategy is proposed by minimizing the neighborhood reconstruction error to handle the noise in the labels. Extensive experimental results on different benchmark datasets show that the proposed approach makes a marked improvement as compared with other methods.
作者 田枫 沈旭昆
出处 《计算机研究与发展》 EI CSCD 北大核心 2014年第8期1821-1832,共12页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2009AA012103) 国家自然科学基金项目(61170132 60533070) 黑龙江省教育厅科学技术研究项目(12511011 12521055) 东北石油大学青年科学基金项目(2013NQ120)
关键词 图像标注 自动标注 弱标签 语义邻域 邻域学习 learning image annotation automatic annotation weak label semantic neighborhood neighborhood
  • 相关文献

参考文献16

  • 1Makadia A, Pavlovic V, Kumar S. A new baseline for image annotation [C] //Proc of the 10th European Conf on Computer Vision. Berlin: Springer, 2008:316-329.
  • 2路晶,马少平.使用基于多例学习的启发式SVM算法的图像自动标注[J].计算机研究与发展,2009,46(5):864-871. 被引量:19
  • 3柯逍,李绍滋,曹冬林.基于相关视觉关键词的图像自动标注方法研究[J].计算机研究与发展,2012,49(4):846-855. 被引量:3
  • 4Nguyen N, Caruana R. Classification with partial labels [C] //Proc of the 14th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2008: 551- 559.
  • 5He Xuming, Zemel R S. Learning hybrid models for image annotation with partially labeled data [C]//Proc of the 22nd Conf on Neural Information Processing Systems. New York: Curran Associates, 2008:625-632.
  • 6Guillaumin M, Mensink T, Verbeek J. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation [C] //Proc of the 12th Int Conf on Computer Vision. Piseataway, NJ: IEEE, 2009.1 309-316.
  • 7Verbeek J, Guillaumin M. Image annotation with TagProp on the MIRFLICKR set [C] //Proc of the 2nd ACM SIGMM Int Conf on Multimedia Information Retrieval. New York: Association for Computing Machinery, 2010 : 537-546.
  • 8Fan Jianping, Shen Yi, Zhou Ning. Harvesting large-scale weakly-tagged image databases from the web [C] //Proe of the 23rd IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE Computer Society, 2010:802-809.
  • 9Bucak S S, Jin Rong. Multi-label learning with incomplete class assignments [C] //Proc of the 24th IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE Computer Society, 2011 : 2801-2808.
  • 10Zhang Shaoting, Huang Junzhou, Huang Yuchi. Automatic image annotation using group sparsity [C] //Proc of the 23rd IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE Computer Society, 2010:3312-3319.

二级参考文献35

  • 1路晶,马少平.基于概念索引的图像自动标注[J].计算机研究与发展,2007,44(3):452-459. 被引量:10
  • 2Duygulu P, Barnard K, Freitas J de, et al. Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary [G] //LNCS2353: Proe of ECCV. Berlin: Springer, 2002:97-112 .
  • 3Barnad K, Duygulu P, Fretias N, et al. Matching words and pictures [J]. Journal of Machine Learning Research, 2003, 3:1107-1135
  • 4Jeon J, Lavrenko V, Manmatha R. Automatic image annotation and retrieval using cross-media relevance models [C] //Proc of the 26th Annual Int ACM SIGIR Conf. New York: ACM, 2003:119-126
  • 5Pan J Y, Yang H J, Duygulu P, et al. Automatic image captioning [C]//Proc of the 2004 IEEE Int Conf on Multimedia and Expo (ICME'04). 2004:1987-1990
  • 6Carneiro G, Vaseoncelos N. Formulating semantics image annotation as a supervised learning problem [C]//Proc of IEEE Conf Computer Vision and Pattern Recognition (CVPR'05). Los Alamitos, CA: IEEE Computer Society, 2005 : 163-168
  • 7Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the multiple-instance problem with axis-parallel rectangles [J]. Artificial Intelligence, 1997, 89(1-2): 31-71
  • 8Maron O, Lozano-Perez T. A framework for multipleinstance learning [G]. Advances in Neural Information Processing Systems 11. Cambridge: MIT Press, 1998: 570- 576
  • 9Zhang Q, Goldman S A. EMDD: An improved multipleinstance learning technique [G]. Advances in Neural Information Processing Systems 14. Cambridge, MA: MIT Press, 2002: 1073-1080
  • 10Yang C, Dong M, Fotouhi F. Region bsased image annotation through multiple-instance learning [C] //Proc of ACM Multimedia. New York: ACM, 2005:435-438

共引文献20

同被引文献18

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部