期刊文献+

基于递归T矩阵的离散随机散射体散射特性研究

Investigation of the scattering characteristics from discrete random scatterers based on recursive aggregate T-matrix algorithm
原文传递
导出
摘要 本文根据电磁场矢量球波函数多极点展开原理及矢量叠加定理提出了递归T矩阵算法的矢量形式,并且基于矢量递归T矩阵算法建立了多散射球模拟离散随机散射体散射的三维电磁散射模型.通过计算不同尺寸、随机分布散射球的散射以及分析散射球间的高阶散射效应,结果表明:矢量递归T矩阵算法具有很高的计算精度,算法中包含多散射体间的高阶散射效应,因此能够精确计算多散射体总的散射效应.本文所建模型可应用于土壤湿度探测工程中评估地表下掩埋离散随机散射体散射对雷达回波信号产生的影响. In this paper, we derive in vector form the recursive aggregate T-matrix algorithm based on the principles of electromagnetic wave multipole expansion of vector spherical wave functions and the vector addition theorem. After that we establish a three-dimensional electromagnetic scattering model for multiple spherical scatterers by simulating the scattering of subsurface discrete random scatterers using the derived algorithm. Calculating the scattering from different sizes, randomly distributed spherical scatteres and analyzing the high-order scattering effects~ we can conclude that the vector recursive aggregate T-matrix algorithm has a high computation accuracy, and contains the interaction effects among multiple scatterers, therefore we can calculate the total scattering effects accurately from multiple scatterers. The established model can be served as a powerful tool in applications for retrieving the impact caused by the scattering of subsurface discrete random scatterers in soil moisture from radar measurements.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第15期142-151,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61172017)资助的课题~~
关键词 矢量球波函数 矢量叠加定理 递归T矩阵算法 高阶散射效应 vector spherical wave function; vector addition theorem; recursive aggregate T-matrix algorithm; high-order scattering effects
  • 相关文献

参考文献38

  • 1Duan X Y, Moghaddam M .2011, Geoscience and Re- mote Sensin9 Symposium (IGARSS), .2011, IEEE Inter- national Vancouver, July 24, .2011,, p1227.
  • 2张宇,张晓娟,方广有.2012,物理学报,61,184203.
  • 3张宇,张晓娟,方广有.2013,物理学报,62,044204.
  • 4齐有政,黄玲,张建国,方广有.2013,物理学报,62,234201.
  • 5Lin Z W, Xu X, Zhang X J, Fang G Y .2011, Lett. 28 014101.
  • 6Lin Z W, Xu X, Zhang X J, Fang G Y .2011, Lett. 28 014102.
  • 7Foldy L L 1945 Phys. Rev. 67 107.
  • 8Lax M 1952 Phys. Rev. 85 261.
  • 9Chin. Phys Chin. Phys Peterson B, Strom S 1974 J. Acoust. Soc. Am. 56 771.
  • 10Waterman P C 1956 Proc. IEEE 53 805.

二级参考文献5

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部