期刊文献+

高速率沉积磁控溅射技术制备Ge点的退火生长研究

Study on the annealing growth of Ge dots at high deposition rate by using magnetron sputtering technique
原文传递
导出
摘要 采用磁控溅射技术在Si衬底上以350?C沉积14 nm的非晶Ge薄膜,通过退火改变系统生长热能,实现了低维Ge/Si点的生长.利用原子力显微镜(AFM)和拉曼(Raman)光谱所获得的形貌和声子振动信息,对Ge点的形成机理和演变规律进行了研究.实验结果表明:在675?C退火30 min后,非晶Ge薄膜转变为密度高达8.5×109cm-2的Ge点.通过Ostwald熟化理论、表面扩散模型和对激活能的计算,很好地解释了退火过程中,Ge原子在Si表面迁移、最终形成纳米点的行为.研究结果表明用高速沉积磁控溅射配合热退火制备Ge/Si纳米点的方法,可为自组织量子点生长实验提供一定的理论支撑. The 14 nm thick Ge thin films are firstly deposited on Si substrate at 350 ℃ by using the magnetron sputtering technique, then the Ge/Si dots are successfully fabricated by annealing those Ge films. According to the morphology and phonon vibration information obtained by AFM and Raman spectroscopy, the formation and evolution mechanism are studied in detail. Experimental results indicate that the amorphous Ge films have been converted to Ge dots with a density of 8.5 × 10^9 cm^-2 after 675 ℃ annealing for 30 min. By using Ostwald ripening theory, surface diffusion model, and calculation of the activation energy, the surface transfer and the dot formation behavior of Ge atoms can be well interpreted. Based on the fabrication technique of Ge/Si nanodots at a high deposition rate combined with the thermal annealing, we have provided a theoretical support for the experiment on self-assembled growth of Ge quantum dots.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第15期327-334,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11274266) 云南省应用基础研究计划重点项目(批准号:2013FA029) 云南省人才引进基金(批准号:W8090304) 云南大学校基金(批准号:2011YB47)资助的课题~~
关键词 锗纳米点 磁控溅射 原子迁移 激活能 Ge nano-dots; magnetron sputtering; atomic migration activation energy
  • 相关文献

参考文献26

  • 1Yakimov A I, DvurechenskiceA V, Nikiforov A I, Chaoekovskioe S V, Tices S A .2003, Semiconductors 37 1345.
  • 2Liu Z, Li Y M, Xue C L, Cheng B W, Wang Q M .2013, Chin. Phys. B 22 116804.
  • 3Tong S, Liu J L, Wan J, Wang K L .2002, Applied Physics Letters 80 1189.
  • 4Ba L, Zeng J L, Zhang S Y, Wu ZQ 1996 Chin. Phys. 5 530.
  • 5Qu X X, Chen K J, Chen M R, Hu C, Li Z F, Feng D .1994, Chin. Phys. 3 730.
  • 6Ning Z Y, Wu X M, Chen J F, Cheng S Y, Hen Z X, Zhang S Q .1994, Chin. Phys. 3 682.
  • 7Liu Z, Zhou T W, Li L L, Zuo Y H, He C, Li C B, Xue C L, Cheng B W, Wang Q M .2013, Applied Physics Letters 103 082101.
  • 8Konle J, Presting H, Kibbel H .2003, Physics E 16 596.
  • 9Shchukin V A, Ledentsov N N, Kop'ev P S, Bimberg D 1995 Phys. Rev. Lett. T5 2968.
  • 10Medeiros-Ribeiro G, Kamins T I, Ohlberg D A A, Stan- ley Williams R 1998 Science 279 353.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部