期刊文献+

锐钛矿相和金红石相Nb:TiO_2电学性质的GGA(+U)法研究 被引量:3

Investigation on the electrical properties of anatase and rutile Nb-doped TiO_2 by GGA(+U)
原文传递
导出
摘要 采用基于密度泛函理论第一性原理GGA和GGA+U相结合的方法研究了不同掺杂浓度下锐钛矿相和金红石相Nb:TiO2的晶体结构、电子结构以及稳定性.结果表明:锐钛矿相Nb:TiO2能带结构与简并半导体类似,呈类金属导电机理.金红石相Nb:TiO2呈半导体导电机理.Nb原子比Ti原子电离产生出更多的电子.锐钛矿相Nb:TiO2中Nb原子的电离率比金红石相Nb:TiO2的大.以上结果说明锐钛矿相Nb:TiO2比金红石相Nb:TiO2更适宜用作TCO材料;掺杂浓度对其杂质能级,费米能级和有效质量都有影响.Nb原子掺杂浓度越高,材料电离率呈降低趋势;形成能计算结果显示:在富钛条件下不利于Nb原子的掺杂,而在富氧条件下有利于Nb原子的掺杂.对于金红石相和锐钛矿相Nb:TiO2,不论是在贫氧或富氧条件下,随着Nb原子掺杂浓度的提高,形成能均增大. Crystal structure, electronic properties, and stability of anatase and rutile Nb-doped TiO2 (Nb:TiO2) compounds with different doping concentrations are studied by the combination of GGA and GGA+U methods within the density functional theory based first-principle calculation. And the main research work and contents are listed as follows: The anatase Nb:TiO2 appears as a degenerated semiconductor which behaves as an intrinsic metal. Its metallic property arises from Nb substitution into the Ti site, providing electrons to the conduction band. In contrast, the rutile Nb:TiO2 shows insulating behaviors. Ionization efficiency of Nb in anatase Nb:TiO2 is higher than that in futile. We expect that anatase Nb:TiO2 is a potential material for transparent conducting oxide (TCO) while rutile Nb:TiO2 is not. The doped systems show different electronic characteristics, such as band structure, Fermi energy, and effective mass of carriers at different doping levels. In higher dopant concentration nNb, the ionization efficiency decreases slightly. Calculated defect-formation energy shows that Ti-rich material growth conditions are not in favor of the introduction of Nb while Nb can be easily doped in Nb:TiO2 under O-rich growth conditions. Nb dopant is difficult to be doped at higher doping level for both anatase and rutile Nb:TiO2.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第15期335-344,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51002135 51172200) 中央高校基础科研基金(批准号:2013QNA4011)资助的课题~~
关键词 第一性原理研究 电子结构 稳定性 NB TiO2 first principle calculation; electronic structure; stability; Nb:TiO2
  • 相关文献

参考文献30

  • 1Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kin- oda G, Hirose Y, Shimada T, Hasegawa T .2005, Appl. Phys. Left. 86 252101.
  • 2Gillispie M A, Hest M F A M, Dabney M S, Perkins J D, Ginley D S .2007, J. Appl. Phys. 101 033125.
  • 3Zhang S X, Kundaliya D C, Yu W, Dhar S, Young S Y, Salamanca-Riba L G, Ogale S B, Vispute R D, Venkate- san T .2007, J. Appl. Phys. 102 013701.
  • 4Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R .2014, Chin. Phys. B 23 057101.
  • 5张彬,王伟丽,牛巧丽,邹贤邵,董军,章勇.2014,物理学报,63,068102.
  • 6章瑞铄,刘涌,滕繁,宋晨路,韩高荣.2012,物理学报,61,017101.
  • 7Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048.
  • 8Morgan B J, Scanlon D O, Watson G W .2009, J. Mater. Chem. 19 5175.
  • 9Yang K S, Dai Y, Huang B B .2009, Chem. Phys. Chem. 10 2327.
  • 10Zhou T G, Liu Z Q, Zuo X .2012, Chin. Phys. Lett. 29 047503.

同被引文献24

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部