期刊文献+

一类具有非线性传染率的SIRS模型传染病的定性分析

A Qualitative Analysis of a SIRS Epidemic Model with a Nonlinear Incidence Rate
下载PDF
导出
摘要 建立了一类带有非线性传染率的SIRS传染病模型,得到基本再生数R0.当R0≤1时,无病平衡点是全局渐近稳定的;当R0>1时,地方病平衡点是全局渐近稳定的. A SIRS epidemic model with a nonlinear incidence rate is estalished. The basic reproductive number is found. whenR0"1,disease free equilibrium point is globally asymptotical stable; whenR0 1,endemic equilibrium is globally asymptotical stable.
出处 《兰州工业学院学报》 2014年第4期30-33,共4页 Journal of Lanzhou Institute of Technology
关键词 传染病模型 基本再生数 全局稳定性 infectious disease model the basic reproductive number the globally asymptotical stability
  • 相关文献

参考文献6

二级参考文献21

  • 1Liu Weimin, Levin S A, Lwasa Yoh. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. Math Biosci, 1986, 23(1): 187-204.
  • 2Ruan Shigui, Wang Weidi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Differential Equations, 2003, 188: 135-163.
  • 3Hethcote H, Ma Zhien, Liao Shengbing. Effects of quarantine in six endemic models for infectious diseases[J]. Math Biosci, 2002, 180: 141-160.
  • 4Li M Y, Graef J R, Wang Liancheng, et al. Global dynamics of an SEIR epidemic model with a varying total population size [J]. Math Biosci, 1999, 160: 191-213.
  • 5Tailei Zhang,Junli Liu,Zhidong Teng. Stability of Hopf Bifurcation of a Delayed SIRS Epidemic Model with Stage Structure[ J ]. Nonlinear Analysis: Real World Applications,2010,11:293-306.
  • 6Rui Xu, Zhien Ma. Stability of a Delayed SIRS Epidemic Model with a Nonlinear Incidence Rate [ J ]. Chaos, Solutions and Fractals,2009,41:2319-232.
  • 7Nuri Zalp, Elif Demirci. A Fractional Order SEIR Model with Vertical Transmission [ J ]. Mathematical and Computer Modelling, 2011,54(1/2) : 1-6.
  • 8Yongsheng Ding, Haiping Ye. A Fractional-order Differential Equation Model of HIV Infection of CIM* T-cells [ J ]. Mathematical and Computer Modelling,2009,50:386-392.
  • 9Haiping Ye,Yongsheng Ding. Nonlinear Dynamics and Chaos in a Fractional-Order HIV Model[ J ]. Mathematical Problems in Engineering ,2009,2009 : 1155-1167.
  • 10T J Anastasio. The Fractional-order Dynamics of Bainstem Vestibule-oculomotor Neurons [ J ]. Biological Cybernetics, 1994,72:69-79.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部