期刊文献+

吸附脱汞中活性炭输送管路的设计与模拟 被引量:1

Design and Numerical Simulation of Activated Carbon Transport Pipeline for Adsorption Mercury Removal
下载PDF
导出
摘要 燃煤源汞是造成大气汞污染的重要原因。利用活性炭进行吸附脱汞是目前重点研究的汞污染控制技术。在通过管路将活性炭送入烟道的过程中,必须保证活性炭的量严格按照要求进行分配。文中通过理论分析与CFD数值模拟,考察了二叉树型管路、多叉树型管路和线型管路在活性炭均匀分配上的效果,并讨论了其应用的条件。研究认为,线型管路无论对连续相还是离散相都难以做到均匀分配;多叉树型管路(典型的如三叉树、四叉树)可以做到均匀分配,并且有一定的灵活性,最适宜在实际工业中应用;二叉树型管路只有在确保管路对称性的情况下才能得到较好的均分活性炭效果,且灵活性较差。此外研究还发现,活性炭颗粒在流场中的运动较为复杂,受包括时间在内的诸多参数影响,且管路非对称性对颗粒分布的影响大于其对流场分布的影响。如对均分的要求较为严格,须加装颗粒浓度实时监测装置与控制装置。 coal combustion is the major reason for mercury pollution of atmosphere. Adsorption technology is a main mercury control technologies under study. To ensure the exact mass distribution of activated carbon particles in different inlets, the transport pipeline must be carefully designed. Based on theoretical analysis and numerical simulation of computational fluid dynamics (CFD), this paper investigated the pipeline allocation efficiency of binary tree type, multi tree type and linear type, and discussed their application conditions. Studies indicate that linear pipeline is hard to allocate uniformly for neither discrete phase nor continuous phase; multi tree type (i.e. triple type, quad type etc.) has advantages of uniform allocation and flexibility, and is suitable for industrial application; binary type pipeline has good uniformity of activated carbon for only symmetrical pipeline arrangement, and lacks of flexibility. In addition, studies show that activated carbon particles are of complex motion in flow field, and influenced by multiple parameters including time; moreover, pipeline asymmetry has more influence on particle distribution than flow field distribution. Real-time monitoring devices and control devices are required with the strict need for uniformity.
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第23期3915-3923,共9页 Proceedings of the CSEE
基金 中国华能集团科技项目(HNKJ11-H23)~~
关键词 脱汞 气固两相流 吸附 计算流体力学 管路 两相分配 mercury removal two phase flows, adsorption computational fluid dynamics (CFD) pipeline two phase allocation
  • 相关文献

参考文献41

  • 1AMAP. Technical background report to the global atmospheric mercury assessment[R]. Nairobi, UNEP, 2008.
  • 2AMAP. Global mercury assessment 2013: sources, atmospheric and aquatic releases and transport[R]. Nairobi, UNEP, 2013.
  • 3郑楚光,张军营,赵永椿,等.煤燃烧汞的排放及控制[M].北京:科学出版社,2010:228-229.
  • 4Hongqun Yang, Zhenghe Xu, Maohong Fan, et al. Adsorbents for capturing mercury in coal-fired boiler flue gas[J]. Journal of Hazardous Materials, 2007(146): 1-11.
  • 5况敏,杨国华,胡文佳,陈武军.燃煤电厂烟气脱汞技术现状分析与展望[J].环境科学与技术,2008,31(5):66-70. 被引量:49
  • 6Weil. Development of novel adsorbents for the control of vapor-phase mercury emission[D]. Pittsburgh; Universityof Pittsburgh, 1998.
  • 7Srivastava R, Martin B, Princiotta F, et al. Control of mercury emissions from coal-fired electric utility boilers[J]. Environmental Science & Technology, 2006(40): 1385-1392.
  • 8Pavlish J H, Sondreal E A, Manm M D, et al. Status review of mercury control options for coal-fired power plants[J]. Fuel ProcessingTechnology, 2003, 82(2-3): 89-165.
  • 9Pavlish J H, Holmes M J, Benson S A, et al. Application of sorbents for mercury control for utilities burning lignite coal[J]. Fuel ProcessTechnology, 2004(85): 563-576.
  • 10Cao Yan, Wang Quanhai, Chen C W, et al. Investigation of mercury transformation by HBr addition in a slipstream facility with real flue gas atmospheres of bituminous coal and powder river basin coal[J]. Energy & Fuel, 2007(2 1): 2719-2830.

二级参考文献258

共引文献481

同被引文献27

  • 1孙巍,晏乃强,贾金平.载溴活性炭去除烟气中的单质汞[J].中国环境科学,2006,26(3):257-261. 被引量:75
  • 2Graydon J W,Zhang X Z,Kirk D W,et al.Sorption and stability of mercury on activated carbon for emission control[J].Journal of Hazardous Materials,2009,168(2-3):978-982.
  • 3Liberti L,Notarnicola M,Amicarelli V,et al.Mercury removal with powdered activated carbon from flue gases at the Coriano municipal solid waste incineration plant[J].Waste Management & Research,1998,16(2):183-189.
  • 4Pavlish J H,Sondreal E A,Mann M D,et al.Status review of mercury control options for coal-fired power plants[J].Fuel Processing Technology,2003,82(2-3):89-165.
  • 5Lee S H,Rhim Y J,Cho S P,et al.Carbon-based novel sorbent for removing gas-phase mercury[J].Fuel,2006,85(2):219-226.
  • 6Granite E J,Pennline H W,Hargis R A.Novel sorbents for mercury removal from flue gas[J].Industrial & Engineering Chemistry Research,2000,39(4):1020-1029.
  • 7Klasson K T,Lima I M,Boihem L L Jr,et al.Feasibility of mercury removal from simulated flue gas by activated chars made from poultry manures[J].Journal of Environmental Management,2010,91(12):2466-2470.
  • 8Wade C B,Thurman C,Freas W,et al.Preparation and characterization of high efficiency modified activated carbon for the capture of mercury from flue gas in coal-fired power plants[J].Fuel Processing Technology,2012,97:107-117.
  • 9Shi D L,Lu Y,Tang Z,et al.Removal of elemental mercury from simulated flue gas by cerium oxide modified attapulgite[J].Korean Journal of Chemical Engineering,2014,31(8):1405-1412.
  • 10Lee S S,Lee J Y,Keener T C.The effect of methods of preparation on the performance of cupric chloride- impregnated sorbents for the removal of mercury from flue gases[J].Fuel,2009,88(10):2053-2056.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部