期刊文献+

有色观测噪声下的多变量设置调整策略

Setup adjustment scheme for multivariate process considering colored observation noises
原文传递
导出
摘要 针对存在初始设置偏差的离散的多变量生产制造过程,研究了观测噪声服从Auto-Rgressive(AR)模型的情况下,考虑调整花费成本为二次型函数时的设置调整问题,在建立过程状态空间方程的基础上,利用卡尔曼滤波方法在线估计过程的状态变量,根据随机二次型最优控制理论,得到了使过程质量损失最小的最优调整策略.通过算例解释了最优调整策略的实现方法,并进行了仿真验证,结果表明,得到的调整策略与观测噪声为白噪声时的质量调整策略相比,能更好地减少过程总体质量损失. For the finite horizon multivariate process with setup error, the optimal adjustment scheme is developed to minimize the total process quality loss with quadratic cost and AutoRegressive observation noises. Based on the state-space process control model, the optimal adjustment scheme is derived by Kalman filter on line estimation and linear quadratic Gaussian (LQG) theory. A simulation case is presented to illustrate the implementation method of the optimal adjustment policy. The optimal adjustment scheme is compared with quality adjustment policy with white noise observation noises by simulations. The results show that the proposed adjustment solution is more effective than other to reduce the total quality loss of the process.
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2014年第8期2121-2126,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(70931004 71071107) 国家杰出青年科学基金(71225006)
关键词 多变量过程 统计过程控制 状态空间模型 卡尔曼滤波 最优调整 multivariate process statistical process adjustment state-space model Kalman filter optimaladjustment
  • 相关文献

参考文献15

  • 1Grubbs F E. An optimum procedure for setting machines or adjusting processes[J]. Journal of Quality Technology, 1983, 15(4): 186- 189.
  • 2Del Castillo E, Pan R, Colosimo B M. A unifying view of some process adjustment methods[J]. Journal of Quality Technology, 2003, 35(3): 286-293.
  • 3Del Castilio E, Pan R, Colosimo B M. Small sample comparison of some setup adjustment methods[J]. Commu- nications in Statistics, Simulation and Computation, 2003, 32(3): 923-942.
  • 4Trietsch D. The harmonic rule for process setup adjustment with quadratic loss[J]. Journal of Quality Technology, 1998, 30(1): 75 -84.
  • 5Sullo P, Vandevan M. Optimal adjustment strategies for a process with run to run variation and 0-1 quality loss[J]. IIE Transactions, 1999, 31:1135- 1145.
  • 6Trietsch D. Process setup adjustment with quadratic loss[J]. IIE Transactions, 2000, 32(4): 299-307.
  • 7Pan R, Del Castillo E. Scheduling methods for the setup adjustment problem[J]. International Journal of Pro- ductions Research, 2003, 41(7): 1467- 1481.
  • 8Colosimo B M, Pan R, Del Castillo E. Setup adjustment for discrete-part manufacturing processes with asym- metric cost functions[J]. International Journal of Production Research, 2005, 43(18): 3837-3854.
  • 9Colosimo B M, Pan R, Del Castillo E. A sequential Markov chain Monte Carlo approach to setup process adjustment over a set of lots[J]. Journal of Applied Statistics, 2004, 31(5): 499-520.
  • 10Lian Z, Colosimo B M, Del Castillo E. Setup error adjustment: Sensitivity analysis and a new MCMC control rule[J]. Quality & Reliability Engineering International, 2006, 22:403- 418.

二级参考文献42

  • 1HuHongtao JingZhongliang LiAnping HuShiqiang TianHongwei.Target tracking in glint noise using a MCMC particle filter[J].Journal of Systems Engineering and Electronics,2005,16(2):305-309. 被引量:5
  • 2弗兰克.M.格里纳.质量策划与分析[M].第4版.北京:中国人民大学出版社,2005:415.
  • 3Grubbs F E. An optimum procedure for setting machines or adjusting processes[J]. Journal of Quality Technology, 1983, 15(4): 186-189.
  • 4Trietsch D. The harmonic rule for process setup adjustment with quadratic loss[J]. Journal of Quality Technology, 1998, 30(1): 75-84.
  • 5Trietsch D. Process setup adjustment with quadratic loss[J]. IIE Transactions, 2000, 32: 299-307.
  • 6Del Castillo E, Pan R, Colosimo B M. A unifying view of some process adjustment method[J]. Journal of Quality Technology, 2003, 35(3): 286-293.
  • 7Del Castillo E, Pan R, Colosimo B M. Small sample performance of some statistical adjustment methods[J]. Communications in Statistics-Simulation and Computation, 2003, 32(3): 923-942.
  • 8Colosimo B M, Pan R, Del Castillo E. Setup adjustment for discrete-Part manufacturing processes with asymmetric cost functions[J]. International Journal of Production Research, 2005, 43(18): 3837-3854.
  • 9Box G E P, Lucefio A. Statistical Control by Monitoring and Feedback Adjustment[M]. New York: John Wiley & Sons, 1997.
  • 10Luceno A. Minimum cost dead-band adjustment schemes under tool-wear effects and delayed dynamics[J]. Statis- tics and Probability Letters, 2000, 50: 165-178.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部