期刊文献+

两水平结构方程模型的贝叶斯模型选择 被引量:1

下载PDF
导出
摘要 文章简要介绍两水平结构方程模型的构造以及模型选择问题,讨论基于贝叶斯准则的模型选择方法以及贝叶斯因子方法在两水平结构方程模型中的应用。通过模拟研究将两种模型选择方法进行比较,证明了两种方法在进行模型选择时均可得出较好结论,而基于贝叶斯准则的模型选择方法更具有计算简单的优越性。
出处 《统计与决策》 CSSCI 北大核心 2014年第16期4-9,共6页 Statistics & Decision
基金 国家自然科学基金天元基金资助项目(11226221) 江苏省高校自然科学基础研究项目(12KJB110009) 云南财经大学科研基金引进人才科研启动费资助项目(YC2012D15)
  • 相关文献

参考文献9

  • 1Chen M H,Dey D K,Ibrahim J G.Bayesian Criterion Based Model Assessment for Categorical Data[J].Biometrika,2004,91.
  • 2Ibrahim J G,Chen M,Sinha D.Criterion-based Methods for Bayesian Model Assessment[J].Statistica Sinica,2001,11.
  • 3Kass R E,Raftery A E.Bayes Factors[J].Journal of the American Sta-tisticalAssociation,1995,90.
  • 4Lee,S.Y.Structural Equation Modelling:A Bayesian Approach[M].New York:Wiley,2007.
  • 5Lee,S.Y.,Shi,J.Q.Maximum Likelihood Estimation of Two-level La-tent Variable Models with Mixed Continuous and Polytomous Data[J].Biometrics,2001,57.
  • 6Lee,S.Y.,Song,X.Y.Maximum Likelihood Analysis of a Two-level Nonlinear Structural Equation Model with Fixed Covariates[J].Jour-nal of Educational and Behavioral Statistics,2005,30.
  • 7McDonald,R.P.,Goldstein,H.Balanced Versus Unbalanced Designs for Linear Structural Relations in Two-level Data[J].The British Jour-nal of Mathematical and Statistical Psychology,1989,42.
  • 8Song,X.Y.,Lee,S.Y.Bayesian Analysis of Two-level Nonlinear Structural Equation Models with Continuous and Polytomous Data[J].British Journal of Mathematical and Statistical Psychology,2004,57.
  • 9李云仙,王学仁.带有有序变量的结构方程模型中的模型选择[J].统计与决策,2011,27(14):15-18. 被引量:2

二级参考文献12

  • 1R. Schines, H. Hoijtink,A. Boomsma. Bayesian Estimation and Testing of Structural Equation Models[J].Psychometrika, 1999, (64).
  • 2R.E. Kass,A.E. Raftery. Bayes Factors[J].Joumal of the American Statistical Association, 1995, (90).
  • 3T.J. DiCiccio, R.E. Kass, et.al. Computing Bayes Factors by Combining Simulation and Asymptotic Approximations[J].Journal of the American Statistical Association,1997, (92).
  • 4A. Gelman,X.L. Meng. Simulating Normalizing Constants from Importance Sampling to Bridge Sampling to Path Sampling[J].Sta tistical Science, 1998, (13).
  • 5S.Y. Lee, X.Y. Song. Bayesian Model Comparison of Nonlinear Structural Equation Models with Missing Continuous and Ordinal Categorical Data[J].British Journal of Mathematical and Statistical Psychology, 2004, ( 57 ).
  • 6S.Y. Lee,N.S. Tang. Bayesian Analysis of Structural Equation Models with Mixed Exponential Family and Ordered Categorical Data[J].British Journal of Mathematical and Statistical Psychology, 2006, (59).
  • 7J.G. Ibrahim, M.H. Chen,D. Sinha. Criterion-based Methods for Bayesian Model Assessment[J].Statistica Sinica,2001,(11).
  • 8M.H. Chen, D.K. Dey,J,G. Ibrahim. Bayesian Criterion Based Model Assessment for Categorical Data[J].Biometrlka,2004, (91).
  • 9S. Geman,D. Geman,Stochastic Relaxation, Gibbs Distribution, and the Bayesian Restoration of Images [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,19841(6).
  • 10N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, et.al. Equa tions of State Calculations by Fast Computing Machine[J].Joumal of Chemical Physics, 1953, (21).

共引文献1

同被引文献180

引证文献1

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部