3Gupta, R.D., Kundu, D. Generalized Exponential Distributions[J]. Australian and New Zealand Journal of Statistics, 1999, 41.
4Gupta, R.D., Kundu, D. Generalized Exponential Distributions: Different Method of Estimations[J].Journal of Statistical Computation and Simulation,2001,69.
5Gupta, R.D., Kundu, D. Exponentiated Exponential Distribution:An Alternative to Gamma or Weibull Distribution [J].Biometrical Journal,2001,43.
6Gupta, R.D., Kundu, D. Discriminating between the Weibull and Generalized Exponential Distributions[J].Computational Statistics and Data Analysis, 2003,43.
7Gupta, R.D., Kundu, D. Discriminating between Gamma and the Generalized Exponential Distributions [J].Journal of Statistical Computation and Simulation,2004,74.
8Parsian A, Nematollahi N. Estimation of Scale Parameter under Entropy loss Funetion[J].Journal of Statistical Planning and Inference,1996,52.
9Lawless JF.寿命数据中的统计模型与方法[M].北京:中国统计出版社,1982
10Uditha Balasooriya, Sutaip L C Saw. Veeresh Gadag. Progressively censored reliability sampling plans for weibull distribution[J]. American Statistical Association, 2000, 42(2): 160-167
7Abd Ellah A H. Bayesian one sample predictionbounds for the Lomax distribution [ J ]. IndianJournal of Pure & Applied Mathematics,2003,34(1):101-110.
8Helu A. Estimation on Lomax progressive censo-ring using the EM algorithm [ J ] . Journal of Statis-tical Computation & Simulation, 2013 , 85 (5):1035-1052.
9Ma Y, Shi Y. Inference for lomax distributionbased on type-II progressively hybrid censored da-ta[ J] . Journal of Physical Sciences,2013,( 17 ):33-41.
10Yang M, Wei C D, Fan Q Z. Parameter estima-tion for Lomax distribution under type II censoring[J]. Advanced Materials Research, 2014,912 :1663-1668.