期刊文献+

通用学习框架在单样本人脸识别中的应用研究

RESEARCH AND APPLICATION OF GENERIC LEARNING FRAME IN FACE RECOGNITION WITH SINGLE SAMPLE
下载PDF
导出
摘要 针对单样本人脸识别问题,提出一种基于通用学习框架的人脸识别方法。以大量的通用样本与各个单样本按一定比例叠加的方式,增加每个类的训练样本总数,有效地运用了2DPCA方法进行特征抽取,将所有样本投影到特征子空间,再根据最大隶属度原则完成人脸识别,明显提高了识别率。该方法的有效性分别在ORL及FERET人脸数据库上得到了验证。 Aiming at the problem of face recognition with single sample,we propose in this paper a recognition method that uses generic learning frame. It increases the total number of training samples of each class in the way of piling up in certain proportion the large amount of generic samples and each single sample,effectively employs the 2DPCA method for features extraction. All the samples are projected onto the feature subspace,and the face recognition is accomplished according to maximum membership principle,thus the recognition rate is remarkably raised. The effectiveness of the proposed method has been verified on ORL and FERET face database.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第8期179-181,231,共4页 Computer Applications and Software
关键词 人脸识别 单训练样本 通用学习框架 二维主成分分析 Face recognition Single training sample Generic learning framework 2DPCA
  • 相关文献

参考文献9

  • 1Lu Jiwen,Tan YapPeng,Wang Gang.Discriminative Multi-Manifold Analysis for Face Recognition from A Single Training Sample per Person[C]//Proceedings of International Conference on Computer Vision,2011:6-13.
  • 2Kim T,Kittler J.Locally Linear Discriminant Analysis for Multi Modally Distributed Classes for Face Recognition with a Single Model Image[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):318-327.
  • 3Wang X,Tang X.Random Sampling for Subspace Face Recognition[J].International Journal of Computer Vision,2006,70(1):91-104.
  • 4Su Y,Shan S,Chen X,et al.Adaptive Generic Learning for Face Recognition from A Single Sample Per Person[C]//IEEE International Conference on Computer Vision and Pattern Recognition,2010:2699-2706.
  • 5Yang J,Zhang D,Yang Jingyu,et al.Two-Dimensional PCA:A New Approach to Appearance-Based Face Representation and Recognition[J].IEEE trans on PAMI,2004,26(1):131-137.
  • 6Cai D,He X,Han J.Spectral regression for efficient regularized subspace learning[C]//IEEE International Conference on Computer Vision,2007:1-8.
  • 7Cai D,He X,Hu Y,et al.Learning a Spatially Smooth Subspace for Face Recognition[C]//IEEE International Conference on Computer Vision and Pattern Recognition,2007:1-7.
  • 8Chen H,Chang H,Liu T.Local Discriminant Embedding and Its Variants[C]//IEEE International Conference on Computer Vision and Pattern Recognition,2005:846-853.
  • 9Hu H.Orthogonal Neighborhood Preserving Discriminant Analysis for Face Recognition[J].Pattern Recognition,2008,41(6):2045-2054.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部