期刊文献+

六角形V_2O_3纳米颗粒制备及其表征测试 被引量:1

Hexagram-shaped V_2O_3 Nanoparticles: Synthesis and Characterization
原文传递
导出
摘要 采用水热法合成了六角形的NH4V3(OH)6(SO4)2前驱体,经退火得到六角形V2O3纳米颗粒,分别对前驱体和退火产物进行表征,并通过SEM表征了不同水热反应时间段前驱体产物的形貌,讨论了六角形纳米结构的形成机理。测试表明,前驱体整体尺寸约600 nm,单枝长度超过200 nm,宽度则小于100 nm,而退火后尺寸减小为约300 nm,单枝长度约100 nm,宽度不超过50 nm。进一步对六角形V2O3纳米颗粒进行锂离子电池充放电性能测试,结果表明,在50 mAh/g的电流密度、1.5~3V终止电压下首次放电比容量为77 mAh/g,20次循环后还有42 mAh/g。 Hexagram-shaped V2O3nanoparticles were synthesized by annealing hexagram-shaped NH4V3( OH)6( SO4)2precursor prepared through hydrothermal method. Both the precursor and annealed samples were characterized, and the formation mechanism of hexagram-shaped nanostructure NH4V3( OH)6( SO4)2was investigated by SEM characterization at different periods during the reaction.The results show that the dimensions of precursor particles are about 600 nm in axial direction,more than200 nm for each branch and less than 100 nm in the width,respectively. After annealing,the dimensions of V2O3particles are below 300 nm in axial direction and about 100 nm for each branch and no more than50 nm in the width,respectively. Electrochemical measurements show that the discharge specific capacity of hexagram-shaped V2O3reaches 77 mAh /g at a current density of 50 mAh /g with the cutoff voltage range 3. 0 ~ 1. 5 V,and remains at 42 mAh /g after 20 cycles.
出处 《钢铁钒钛》 CAS 北大核心 2014年第3期23-27,共5页 Iron Steel Vanadium Titanium
基金 国家自然科学基金(51720124 50872084) 新世纪优秀人才支持计划(NCET100605)资助
关键词 V2O3纳米颗粒 水热法 表征分析 V2O3 nanoparticles hydrothermal characterization
  • 相关文献

参考文献17

  • 1Nordlinder S,Nyholm L,Gustafsson T,et al.Lithium insertion into vanadium oxide nanotubes:electrochemical and structural as?pects[J].Chem.Mater.,2006,18:195-503.
  • 2Wang B,Takahashi K,Lee K,et al.Nanostructured vanadium oxide electrodes for enhanced lithium?ion intercalation[J].Adv.Funct.Mater.,2006,16:1133-1144.
  • 3Corr S A,Grossman M,Furman J D,et al.Controlled reduction of vanadium oxide nanoscrolls: crystal structure,morphology,and electrical properties[J].Chem.Mater.,2008,20:6396-6404.
  • 4Hong W K,Park J B,Yoon J,et al.Hydrogen?induced morphotropic phase transformation of single?crystalline vanadium dioxidenanobeams[J].Nano Letter.,2013,13:1822-1828.
  • 5Takahashi K,Limmer S J,Wang Y,et al.Synthesis and electrochemical properties of single?crystal V2O5 nanorod arrays bytemplate?based electrodeposition[J].Phys.Chem.,2004,108:9795-9800.
  • 6Yin H,Luo M,Yu K,et al.Fabrication and temperature?dependent field?emission properties of bundlelike VO2 nanostructures[J].Mater.Interfaces,2011,3: 2057-2062.
  • 7Varghese B,Tamang R,Tok E S,et al.Photothermoelectric effects in localized photocurrent of individual VO2 nanowires[J].Phys.Chem.,2010,35:15149-15156.
  • 8O’Dwyer C,Navas D,Lavayen V,et al.Nano?urchin: the formation and structure of high?density spherical clusters of vanadi?um oxide nanotubes[J].Chem.Mater.,2006,18: 3016-3022.
  • 9Cao C,Gao Y,Luo H.Pure single?crystal rutile vanadium dioxide powders: synthesis,mechanism and phase?transformationproperty[J].Chem.Mater.,2010,22: 3043-3050.
  • 10Kong F Y,Li M,Li D B,et al.Synthesis and characterization of V2O3 nanocrystals by plasma hydrogen reduction[J].Journalof Crystal Growth,2012,346:22-26.

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部