期刊文献+

白腐真菌Trametes sp. SQ01漆酶的新功能:转化2-羟基-6氧-6-苯基-2,4-己二烯酸 被引量:2

New function of laccase from Trametes sp. SQ01:transforming 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate
原文传递
导出
摘要 【目的】利用白腐真菌Trametes sp.SQ01漆酶转化2-羟基-6氧-6-苯基-2,4-己二烯酸(HOPDAs),可以帮助我们进一步了解漆酶新的催化特性及解决多氯联苯降解过程中HOPDAs的积累问题。【方法】利用紫外可见光谱分析法,研究了漆酶对8种不同取代基的HOPDAs的转化情况,并对漆酶的稳态动力学参数进行了测定。【结果】漆酶可以在没有任何中介物的条件下催化HOPDAs,并生成无色的物质,尤其是漆酶可以催化3,8,11-3Cl HOPDA,而这一物质几乎不能被BphD和Rhodococcus sp.R04转化。稳态动力学分析表明,在5种HOPDAs中,10-Cl HOPDA是漆酶的最适底物,其Km与HOPDA和8-Cl HOPDA相近。尽管3,10-2F HOPDA并不是漆酶的最适底物(Km=17.02μmol/L),但是它的转化效率(kcat/Km)是最高的。【结论】漆酶可以有效转化多种HOPDAs,这为多氯联苯的降解提供一种新的思路。 [ Objective ] To study the transformation of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoates (HOPDAs) by laccase from Trametes sp. SQ01 so to further understand the new catalytic properties of lacease and solve the problem of accumulations of HOPDAs in polychlorinated biphenyls ( PCBs ) degradation. [ Methods ] With UV-vis spectropbotometer, we studied the transformations of 8 substituted HOPDAs by laecase, and measured the steady-state kinetics parameters of laccase against parts of HOPDAs. [ Results] Laccase catalyzed HOPDAs to colorless substances without any mediators; among them, especially 3,8,11-3Cl HOPDA that was barely transformed by 2-hydroxy-6-oxo-6- phenylhexa-2,4-dienoate hydrolase (BphD) and Rhodococcus sp. R04, also could be transformed by this lacease. The analysis of the steady-state kinetics indicated that 10-Cl HOPDA was the optimal substrate of laccase among 5 HOPDAs, and the Km was lower than that of HOPDA and 8-Cl HOPDA. Although 3,10-2F HOPDA was not the optimal substrate (K = 17.02 μmol/L) , its transformation efficiency (kcat/Km) was the highest. [ Conclusion] Laccase from Trametes sp. SQ01eould transform various HOPDAs effectively, and has its potential in eliminating PCB pollution.
出处 《微生物学报》 CAS CSCD 北大核心 2014年第8期913-918,共6页 Acta Microbiologica Sinica
基金 国家自然科学基金项目(3080030) 山西省高等学校高新技术产业化项目(2012002)~~
关键词 2-羟基-6氧-6-苯基-2 4-己二烯酸(HOPDAs) 漆酶 催化作用 HOPDAs (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoates), laccase, catalysis
  • 相关文献

参考文献15

  • 1Seah SYK, Labb6 G, Nerdinger S, Johnson MR, Snieekus V, Ehis LD. Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls. The Journal of Biological Chemistry, 2000, 275(21 ) : 15701-15708.
  • 2Ohtsubo Y, Kudo T, Tsuda M, Nagata Y. Strategies for bioremediation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 2004, 65 ( 3 ) : 250-258.
  • 3Seeger M, Timmis KN, Hofer B. Conversion of chlorobiphenyls into phenylhexadienoates and henzoates by the enzymes of the upper pathway for polychlorotfiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Applied and Environmental Microbiology, 1995, 61 (7) : 2654-2658.
  • 4Mayer AM, Staples RC. Laeease: new functions fir an old enzyme. Phytochemistr, 2002, 60 (6) : 551-565.
  • 5Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure- function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: Enzymatic, 2011, 68(2) : 117-128.
  • 6季立才,胡培植.漆酶的结构、功能及其应用[J].氨基酸和生物资源,1996,18(1):25-29. 被引量:48
  • 7Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ. Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laeease. Process Biochemistry, 2009, 44 (10) : 1185-1189.
  • 8Yang XQ, Sun Y, Qian SJ. Biodegradation of seven polyehlorinated biphenyls by a newly isolated aerobicbacterium ( Rhodococcus sp. R04 ). Journal of Industrial Microbiology & Biotechnology, 2004, 31 (9) : 415-420.
  • 9杨秀清,赵晓霞,赵永福,郑媛.一种pH稳定的黄色漆酶的快速纯化和性质特征[J].微生物学通报,2009,36(2):299-308. 被引量:4
  • 10杨秀清,郑媛,李鹏丽,王婧人.红球菌-R04生物降解多卤代联苯的影响因素研究[J].中国环境科学,2010,30(5):694-698. 被引量:11

二级参考文献47

  • 1杨建明,张小敏,邢增涛,陈明杰,曹晖,谭琦,潘迎捷.毛木耳漆酶纯化及其部分漆酶特性的研究[J].菌物学报,2005,24(1):61-70. 被引量:25
  • 2祝永明,涂厉标,王真.互为内标法测定去甲万古霉素与万古霉素的血药浓度[J].中国医院药学杂志,2005,25(12):1126-1128. 被引量:24
  • 3Yoshida H. Chemistry of Lacquer (Urusht) part 1. J Chem Soc, 1883, 43: 472-486.
  • 4Leontievsky AA, Vares T, Lankinen P, et al. Blue and yellow laccase of ligninolytic fungi. FEMS Microbiol Lett, 1997, 156(1): 9-14.
  • 5Alexey Leontievsky, Nina Myasoedova, Natalia Pozdnyakova, et al. Yellow laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Letters, 1997, 413: 446-448.
  • 6Eggert C, Temp U, Eriksson K-EL. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol, 1996, 62: 1151-1158.
  • 7Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.
  • 8Sadhasivam S, Savitha S, Swaminathan K, et al. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1. Process Biochemistry, 2008, 43: 736-742.
  • 9Arora DS, Gill, PK. Laccase production by some white rot fungi under different nutritional conditions. Bioresource Technology, 2000, 73: 283-285.
  • 10Hou H, Zhou J, Wang J, et al. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem, 2004 39: 1415-1419.

共引文献60

同被引文献18

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部