期刊文献+

过量表达棉花GaSus3基因增强拟南芥的耐盐性 被引量:4

Over Expression of a Cotton GaSus3 Gene Enhancing the Salt Stress Tolerance of Arabidopsis thaliana
原文传递
导出
摘要 构建了植物过量表达载体p35S::GaSus3,通过花序浸染法成功获得转GaSus3基因拟南芥植株。利用NaCl模拟盐胁迫处理,证实转基因拟南芥与野生型相比耐盐性明显增强。在盐胁迫下,转基因拟南芥受到的影响较小,而野生型则受盐害影响严重:转基因拟南芥具有更好的萌发率和主根长度,以保证植株正常生长;盐胁迫下转基因拟南芥能保持较多的绿色叶片,而野生型则过早黄化死亡。研究还发现,转基因拟南芥的过氧化氢酶活性在胁迫前后都高于野生型,这说明转GaSus3基因能够提高拟南芥抗氧化胁迫的能力。研究结果为进一步探讨GaSus3基因在棉花耐盐方面的功能奠定了基础。 A plant over expression vector p35S::GaSus3 was constructed and transformed into the Arabidopsis. Transgenic plants were obtained successfully by floral dip method. Compared to the wide type plants, the salt resistance ability of GaSus3 transgenic plants were enhanced significantly under NaC1 treatments. Under salt stress concentration, the growth rate of the wild-type Arabidopsis was severely suppressed, while the transgenic Arabidopsis showed less impact. Transgenic plants showed better seed germination rate and relatively longer root length than wild type, which could support plant growth under stress condition. Besides, the leaves of transgenic plants were less harmed which keep more green blade, whereas the wild-type Arabidopsis showed early yellowing and death. A relative significantly higher catalase activity had been found in transgenic plant compared with the wide type before and after salt stress treatment, which indicated that over expression of Ga- Sus3 could significantly enhance the plants ROS scavenge ability. The result showed that with the comparison of wide type plants, the salt resistance ability of transgenic plants were enhanced significantly. All these results help to establish the basis of study the functions of GaSus3 in response to salt stress in the future.
出处 《植物生理学报》 CAS CSCD 北大核心 2014年第7期901-908,共8页 Plant Physiology Journal
基金 浙江农林大学启动经费(2010FR042)
关键词 棉花GaSus3基因 盐胁迫 过量表达 基因功能研究 cotton GaSus3 salt stress over expression gene function research
  • 相关文献

参考文献26

  • 1何美敬,刘立峰,穆国俊,侯名语,陈焕英,崔顺立.花生蔗糖合酶基因AhSuSy的克隆和干旱胁迫表达分析[J].作物学报,2012,38(12):2139-2146. 被引量:8
  • 2裴惠娟,张满效,安黎哲.非生物胁迫下植物细胞壁组分变化[J].生态学杂志,2011,30(6):1279-1286. 被引量:26
  • 3Aebi H (1984). Catalase in vitro. Methods Enzymol, 105:121-126.
  • 4Albrecht G, Mustroph A (2003). Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta, 217 (2): 252-260.
  • 5Barrero-Sicilia C, Hernando-Amado S, Gonzalez-Melendi P, Carbonero P (2011). Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta, 234 (2): 391-403.
  • 6Baud S, Vaultier MN, Rochat C (2004). Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot, 55 (396): 397-409.
  • 7Biemelt S, Hajirezaei MR, Melzer M, Albrecht G, Sonnewald U (1999). Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta, 210 (1): 41-49.
  • 8Cardini CE, Leloir LF, Chiriboga J (1955). The biosynthesis of sucrose. Biol Chem, 214 (1): 149-155.
  • 9Chen A, He S, Li F, Li Z, Ding M, Liu Q, Rong J (2012). Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns. BMC Plant Biol, 12:85.
  • 10Chopra S, Del-Favero J, Dolferus R, Jacobs M (1992). Sucrose synthase ofArabidopsis: Genomic cloning and sequence characterization. Plant Mol Biol, 18 (1): 131-134.

二级参考文献125

  • 1贺鸿雁,孙存华,杜伟,李扬.PEG6000胁迫对花生幼苗渗透调节物质的影响[J].中国油料作物学报,2006,28(1):76-78. 被引量:41
  • 2李刚,唐剑锋,林咸永,章永松,郑绍建.小麦根尖细胞壁对铝的吸附/解吸特性及其与耐铝性的关系[J].植物营养与肥料学报,2007,13(2):192-199. 被引量:11
  • 3Cui SX, Huang F, Wang J, et al. 2005. A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 5: 3162-3172.
  • 4Dani V, Simon WJ, Duranti M, et al. 2005. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics, 5: 737-745.
  • 5Diaz-Vivancos P, Clemente-Moreno MJ, Rubio M, et al. 2008. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Journal of Experimental Botany, 59 : 2147-2160.
  • 6Fecht-Christoffers MM, Braun H, Lemaitre-Guillier C, et al. 2003. Effect of manganese toxicity on the protcome of the leaf apoplast in cowpea. Plant Physiology, 133: 1935- 1946.
  • 7Feng HY, An LZ, Chen T, et al. 2003. The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition (δ^13C) of two soybean cultivars (Glycine max) under field conditions. Environmental and Experimental Botany, 49 : 1-8.
  • 8Gomez JM, Jimenez A, Olmos E, et al. 2004. Location and effeets of long-term NaC1 stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea ( Pisum sativum cv. Puget) chloroplasts. Journal of Experimental Botany, 55: 119-130.
  • 9Griffith M, Antikainen M, Hon WC, et al. 1997. Antifreeze proteins in winter rye. Physiologia Plantarum, 100: 327- 332.
  • 10Griffith M, Yaish MWF. 2004. Antifreeze proteins in overwintering plants: A tale of two activities. Trends in Plant Science, 9: 399-405.

共引文献32

同被引文献94

引证文献4

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部