期刊文献+

拟南芥AtrbohD和AtrbohF缺失对叶蛋白质组的影响 被引量:1

Effects of Defi ciency in AtrbohD and AtrbohF on Changes in Leaf Proteome in Arabidopsis thaliana
原文传递
导出
摘要 拟南芥NADPH氧化酶AtrbohD和AtrbohF在脱落酸(abscisic acid,ABA)抑制主根伸长、ABA诱导气孔关闭以及植物应答干旱、盐及病菌侵染等逆境胁迫反应中发挥重要作用,但这2个蛋白亚基缺失对拟南芥(Arabidopsis thaliana)蛋白质组的影响还未见报道。我们以营养土中生长16 d的野生型及AtrbohD和AtrbohF双基因突变体atrbohD1/F1叶片为材料进行蛋白组学分析,在双向电泳图谱上可分辨出约1 000个蛋白点,且蛋白表达谱存在差异。选取42个显著差异蛋白点进行MALDI-TOF/TOF质谱鉴定,成功鉴定出20个差异蛋白,这些蛋白主要与氧化还原、能量代谢、蛋白代谢、转录和信号传导等相关,还有一些蛋白功能未知。 NADPH oxidase AtrbohD and AtrbohF play essential roles in abscisic acid (ABA)-inhibited primary root growth, ABA-induced stomatal closure, and in response to adverse stress conditions including disease infection, drought and salt stress in Arabidopsis. However, effects of deficiency in the two protein subunits on change in leaf proteome have not been reported. Here, leaf proteomic analysis of wild type (WT) and double mutant atrbohD1/F1 of AtrbohD and AtrbohF after grown in soil for 16 days were performed. About 1 000 protein spots in WT and the mutant were detected in the two-dimensional electrophoresis gels, and clear difference in protein profiles was observed. The 42-protein spots were selected based on their differential expression be- tween WT and the mutant, and 20 proteins of which were identified by MALDI-TOF/TOF mass spectrometry. Most of proteins identified are involved in multiple cellular processes including redox, energy metabolism, protein metabolism, transcription and signal transduction. Some other identified proteins are functional unknown.
出处 《植物生理学报》 CAS CSCD 北大核心 2014年第7期1033-1038,共6页 Plant Physiology Journal
基金 国家自然科学基金(31070239)
关键词 拟南芥 NADPH氧化酶 蛋白质组 双向电泳 Arabidopsis thaliana NADPH oxidase proteome two-dimensional electrophoresis
  • 相关文献

参考文献28

  • 1付国良,黄晓红.甘油醛-3-磷酸脱氢酶功能的研究进展[J].生物物理学报,2013,29(3):181-191. 被引量:23
  • 2梁颖,李玉花.植物中磷酸甘油醛-3-磷酸脱氢酶(GAPDH)在氧化胁迫下的生理功能[J].植物生理学通讯,2009,45(10):1027-1032. 被引量:13
  • 3Baxter A, Mittler R, Suzuki N (2014). ROS as key players in plant stress signaling. J Exp Bot, 65:1229-1240.
  • 4Bradford MM (1976). A rapid and sensitive method for the quantifica- tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72:248-254.
  • 5Chen JH, Jiang HW, Hsieh E J, Chert HY, Chien CT, Hsieh HL, Lin TP (2012). Drought and salt stress tolerance of an Arabidopsis glu- tathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol, 158:340-351.
  • 6Davletova S, Rizhsky L, Liang H, Zhong SQ, Oliver D J, Coutu J, Shulaev V, Sehlauch K, Mittler R (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell, 17:268-281.
  • 7Desikan R, Last K, Harrett-Williams R, Tagliavia C, Harter K, Hool- ey R, Hancock JT, Neill SJ (2006). Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J, 47:907-916.
  • 8Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Tor- res MA, Linstead P, Costa S, Brownlee C, Jones JD et al (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422:442-446.
  • 9Jiang HW, Liu MJ, Chert IC, Huang CH, Chao LY, Hsieh HL (2010). A glutathione S-transferase regulated by light and hormones par- ticipates in the modulation of Arabidopsis seedling development. Plant Physiol, 154:1646-1658.
  • 10Jiao YH, Sun LR, Song YL, Wang LM, Liu LP, Zhang LY, Liu B, Li N, Miao C, Hao FS (2013). AtrbohD and AtrbohF positively regu- late abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. J Exp Bot, 64:4183-4192.

二级参考文献97

  • 1Price GD, Evans JR, Voncaemmerer S, Yu JW, Badger MR (1995). Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase-activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose-bisphosphate regeneration in transgenic tobacco plants. Planta, 195:369-378.
  • 2Quinn J, Findlay VJ, Dawson K, Millar JB, Jones N, Morgan BA, Toone WM (2002). Distinct regulatory proteins control the graded transcriptional response to increasing H2O2 levels in fission yeast Schizosaccharomyces pombe. Mol Cell Biol, 13:805-816.
  • 3Ross CA, Poirier MA (2004). Protein aggregation and neurodegenerative diease. Nat Med, 10:S10-S17.
  • 4Russell DA, Sachs MM (1989). Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell, 1:793-803.
  • 5Russell DA, Sachs MM (1991). The maize cytosolic glyceraldehydes-3-phosphate dehydrogenase gene family: Organ-specific expression and genetic analysis. Mol Gen Genet, 229: 219-228.
  • 6Sachs MM, Freeling M, Okimoto R (1980). The anaerobic proteins of maize. Cell, 20:761-767.
  • 7Sachs MM, Subbiah CC, Saab IN (1996). Anaerobic gene expression and flooding tolerance in maize. J Exp Bot, 47:1-15.
  • 8Scheibe R, Backhausen JE, Emmerlich V, Holtgrefe S (2005). Strategies to maintain redox homeostasis during photosynthesis under changing conditions. J Exp Bot, 56:1481-1489.
  • 9Shieh JC, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JB (1997). The Mcs4 response regulator coordinately controis the stress-activated Wakl-Wisl-Styl MAP kinase pathway and fission yeast cell cycle. Genes Dev, 11:1008-1022.
  • 10Shieh JC, Wilkinson MG, Millar JBA (1998). The Winl mitotic regulator is a component of the fission yeast stress-activated Styl MAPK pathway. Mol Biol Cell, 9:311-322.

共引文献32

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部