期刊文献+

钒氧化物催化CO_2氧化异丁烷脱氢的研究(英文) 被引量:3

Insights into the vanadia catalyzed oxidative dehydrogenation of isobutane with CO_2
下载PDF
导出
摘要 采用溶胶-凝胶法制备了一系列钒氧化物催化剂,并用于CO2氧化异丁烷脱氢反应.采用X射线衍射、低温N2吸附-脱附、O2程序升温氧化、程序升温表面反应和原位傅里叶变换红外光谱等方法研究了催化剂的性质.反应结果表明,尽管所有钒氧化物催化剂的丁烯选择性都大于85%,但随着催化剂组成和制备方法的改变,催化活性和稳定性差异显著.其中,12 wt%V2O5/Ce0.6Zr0.4O2(7 wt%)-Al2O3的催化活性最高,而6 wt%V2O5-Ce0.6Zr0.4O2(7 wt%)-Al2O3的稳定性最佳.关联分析催化反应结果与催化剂表征表明,钒氧化物的催化活性取决于VOx物种的结晶度和分散度,而催化剂表面所积重质焦炭的特性是决定催化剂稳定性的关键.非稳态反应和原位光谱结果确认,CO2氧化异丁烷脱氢遵循Mars-van Krevelen氧化还原机理. Vanadia‐based catalysts were prepared using the sol‐gel method and were subjected to the oxida‐tive dehydrogenation of isobutane with CO2. The materials were extensively characterized by using X‐ray diffraction, N2 adsorption‐desorption, O2‐temperature programmed oxidation, temperature programmed surface reaction, and in situ Fourier transform infrared techniques. Catalytic results indicate that a high selectivity toward total C4 olefins over 85% was obtained over all of the catalysts. On the contrary, the highest conversion of isobutane was observed over 12 wt% V2O5/Ce0.6Zr0.4O2(7 wt%)‐Al2O3, and a more stable performance was achieved over 6 wt% V2O5‐Ce0.6Zr0.4O2(7 wt%)‐Al2O3. The catalytic activity for the titled reaction was found to be dependent on the dispersion and crystallinity of the VOx species over the catalyst, and the deposition of the heavier coke over the catalyst was revealed to be the main reason for the catalyst deactivation. Moreover, the benefit of CO2 toward the titled reaction was clearly revealed from TPSR results, and the reaction was confirmed to follow the redox mechanism.
出处 《催化学报》 SCIE EI CAS CSCD 北大核心 2014年第8期1329-1336,共8页
基金 supported by the National Basic Research Program of China (973 Program,2010CB732300) the National Natural Science Foundation of China (21376146, 21306111,21337003)~~
关键词 异丁烷 氧化脱氢反应 二氧化碳 五氧化二钒 三氧化二铝 Isobutane Oxidative dehydrogenation Carbon dioxide Vanadia Alumina
  • 相关文献

参考文献41

  • 1lannazzo V, Neri G, Galvagno S, Di Serio, M, Tesser R, Santacesaria E. Appl Catal A, 2003, 246:49.
  • 2Pozan G S, Tavman A, Boz I. Chem Engl, 2008, 143:180.
  • 3Wang G W, Li C Y. Shan H H. ACS Carol 2014:1139.
  • 4He M Y, Hu Z Q, Xiao B, Li J F, Guo X J, Luo S Y, Yang F, Feng Y, Yang G J, Liu S M. Intl Hydrogen Energy, 2009, 34:195.
  • 5Liang C D, Xie H, Schwartz V, Howe J, Dai S, Overbury S H. J Am Chem Soc, 2009, 131:7735.
  • 6Ovsitser O, Kondratenko E V. Chem Commun, 2010, 46:4974.
  • 7Wang G Z, Zhang L, Deng J G, Dai H X, He H, Au C T. Appl Catal A, 2009, 355:192.
  • 8Ansari M B, Park S E. Energy Environ Sci, 2012, 5:9419.
  • 9Wang S B, Zhu Z H. Energy Fuels, 2004, 18:1126.
  • 10Ajayi B P, Rabindran Jermy B, Abussaud B A, AI-Khattaf S. J Porous Mater, 2013, 20:1257.

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部