期刊文献+

分形维数结合RLS-ICA的脑电信号消噪 被引量:2

Hybrid methodology combining fractal dimension and RLS-ICA for rejection of electroencephalography noise
下载PDF
导出
摘要 针对脑机接口中脑电信号噪声的去除,提出将分形维数、递归式最小均方(RLS)-独立分量分析(ICA)相结合的方法.利用ICA对脑电信号进行盲源分离,得到源信号;采用分形维数自动识别源信号中的噪声信号;利用RLS自适应滤波器对已识别出来的噪声信号进行自适应滤波;通过信号重构,得到去除噪声的脑电信号.该方法有2个优点:一是通过对分形维数自动识别源信号中的噪声信号进行滤波,克服了RLS-ICA将所有源信号进行滤波,可能造成部分有用脑电信号被去除的缺点;二是通过分形维数减少RLS滤波的独立源,加快了运行速度.为了证明该方法的有效性,分别对2008年国际BCI竞赛数据和本实验室的数据进行处理.将该方法与RLS-ICA进行比较,结果显示,该方法的去噪效果明显优于RLS-ICA,单个样本的运行时间比RLS-ICA少0.07s.采用提出的方法不仅能够去除一些常见的诸如眼电(EOG)、肌电(EMG)等噪声,而且能够去除一些未知的噪声. A novel method combining fractal dimension and recursive least-squares(RLS)-independent component analysis(ICA)was presented in order to remove noise from electroencephalography(EEG)in the study on brain computer interfaces(BCIs).The ICA was used to decompose the contaminated EEG signals into independent components(ICs).Then the fractal dimension was used to automatically identify ICs containing noises.The RLS adaptive filters were applied to filter noise in the identified ICs further.The processed ICs were projected back to reconstruct the uncontaminated EEG signals.The proposed method has two obvious advantages.One is that it only filters ICs identified to contain noise by fractal dimension,which can overcome the shortage that RLS-ICA filters all the ICs to result in some useful EEG being deleted.The other is that it can accelerate the speed of RLS-ICA by decreasing the number of ICs to be filtered.The 2008International BCI competition data and the laboratory data were preprocessed in order to verify the effectiveness of the proposed method.The proposed method was compared with RLS-ICA.Experimental results showed that the novel method had better performance than RLS-ICA in removing noise.The running time of one sample by the proposed method was 0.07seconds shorter than that by the RLS-ICA in average.The proposed method can not only remove electrooculogram(EOG)and electromyography(EMG),but also remove some unknown noises.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第7期1234-1240,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60975079 31100709) 上海市教育委员会创新项目(11YZ19 12ZZ099)
关键词 脑机接口(BCI) 自适应滤波 分形维数 brain computer interface(BCI) adaptive filter fractal dimension
  • 相关文献

参考文献14

  • 1GUERRERO MOSQUERA C, NAVIA-VAZQUEZ A. Automatic removal of ocular artifacts using adaptive fil- tering and independent component analysis for electroen- cephalogram data [J]. lET Signal Processing, 2012, 6(2): 99-106.
  • 2ZItU Dan-hua, TONG Ji-jun, CHEN Yu-quan. An ica- based method for automatic eye blink artifact correction in multi-channel EEG [C] // Proceeding of the 5th Inter- national Conference on Technology and Applications in Bi- omedicine. Shenzhen: IEEE, 2008:338 - 341.
  • 3IA Yan-dong, MA Zhong-wei, I.U Wen-kai, et al. Au tomatic removal of the eye blink artifact from EEG using an ica-l)ased template matching approach[J]. Physiolog- ical Measurement, 2006, 27(4): 425 436.
  • 4HE P, WILSON G, RUSSELL C. Removal of ocular artifacts from electro-encephalogram by adaptive filte- ring [ J]. Medical Biological Engineering and Computing, 2004. 42(3): 407 -412.
  • 5杜晓燕,李颖洁,朱贻盛,任秋实,赵仑.脑电信号伪迹去除的研究进展[J].生物医学工程学杂志,2008,25(2):464-467. 被引量:31
  • 6WANG Qiang, OLGA Sourina, MINH Khoa nguyen. EEG based "serious" games design for medical applica tions [C] // 2010 International Conference on Cyber- worlds. Singapore: IEEE, 2010: 270-276.
  • 7GOMEZ HERRERO G, DE CLERCQ W, ANWAR It, et al. Automatic removal of ocular artifacts in lhe EEG withoul an EOG reference channel [C] // Proceeding of the 7th Nordic Signal Processing "Symposium. Rejkjavik: IEEE, 2006: 130- 133.
  • 8李伟平,张爱华.脑电信号门通应预处州方法的研究与应用[D].兰州:兰州理工大学.200,1:30.
  • 9KI.AUS-ROBERT M, BENJAMIN B, CAI<MEN V,et al. BCI competition IV [EB/OL]. [2012 11 061]. http ://www. bbci. de/competition/iv/.
  • 10Mathworks [EB/OL.]. [2012-11 06]. http://www. mathworks, cn/cn/help/slats/lillietest, htmI.

二级参考文献31

  • 1魏琳,沈模卫,张光强,施壮华.EEG波形伪迹去除方法[J].应用心理学,2004,10(3):47-52. 被引量:9
  • 2Wu Ting, Yan Guozheng, Yang Banghua, et al. EEG Signal Denoising and Feature Extraction Using Wavelet Transform in Brain Computer Interface [ J ]. Journal of Donghua University ( Eng. Ed) ,2007,24(5) :641 -645.
  • 3Xue Zhaojun, Li Jia, Song LI, et al. Using ICA to Remove Eye Blink and Power Line Artifacts in EEG [ C ]//Proceeding s of International Conference on Innovative Computing, Information and Control, Aug 30-Sep 1, Beijing, China, 2006, 3.
  • 4Tang A C, Sutherland M T, McKinney C J. Validation of SOBI Components from High-Density EEG [ J ]. Neuroimage, 2005, 25 (2) : 539 -553.
  • 5Yimman S, Hinjit W, et al. IIR notch filter design with modified pole-zero placement algorithm[ C ]//Signal Processings of the 3rd IEEE International Symposium, Darmstadt, Germany, Dec 14 - 17, 2003 : 822 - 825 .
  • 6Widrow B, Glover J R, et al. Adaptive Noise Cancelling: Principles and Applications[J]. Proceedings of the IEEE, Dec, 1975, 63(12) : 1692 - 1716.
  • 7Osman Kukrer and Aykut Hocanin. Frequency response shaped LMS adaptive filter[ J]. Digital Signal Processing, 2006, 16(6) : 855 - 869.
  • 8Lee T W, Girolami M, Sejnowski TJ. Independent Component Analysis using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources [ J ]. Neural Computation, 1999, 11:417 -441.
  • 9Aapo Hyvarinen and Erkki Oja,Independent Component Analysis: Algorithms and Applications [ J ]. Neural Networks, 2000,13 (4 - 5) :411 -430.
  • 10Romo-Vazquez R, Ranta R, et al. EEG Ocular Artefacts and Noise Removal [ C ]//Proceedings of the 29th Annual International Conference of the IEEE EMBS, Cite Intemationale, Lyon, France, Aug. 23 - 26, 2007 : 5445 - 5448.

共引文献231

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部