期刊文献+

一类考虑病毒发生变异的SIS疾病传播模型 被引量:3

Disease spread model with variation of virus included
下载PDF
导出
摘要 为了研究变异行为对病毒传播的影响,提出了一个病毒发生变异的疾病传播模型,在模型中考虑了两种病毒相互转换的过程,计算机模拟结果表明,两种病毒的稳态感染比例与它们之间的相互转换概率γ1和γ2有关,当γ1>0且γ2=0时,I1型感染者将消失,当γ1与γ2都大于0时,I1I2与γ1γ2成反比,且与α1β1和α2β2的取值无关。研究还发现病毒变异时由于缺乏对应的治疗药物和措施而出现一段真空期,这导致变异病毒的感染比例快速增加,但真空期的出现只能增加感染者的瞬时感染比例,而对稳态感染比例没有影响。该研究对人们深入理解病毒传播机理具有启发作用。 In order to study the influence of variation on virus' spreading process, this paper proposed a disease spread model with variation included. In the model, the reciprocal transformation procession between two kinds of viruses was concluded. The computer simulation showed that the steady infected ratio of two viruses was related with the transformation probability of Ii them. As γ1 〉 0 and γ2 = 0 then the infected individuals of I1 will disappear. As Yl and Y2 are all above of 0, then I1/I2 was in-versely proportional to γ1 /γ2 besides I1 /I2 is irrelevant with α1/β1 and α2/β2 In addition, during the viruses' variation period the infec- tive ratio rised rapidly for the absence of symptomatic treatment and drugs. But which could only increase the infected ratio at the moment and had no influence to the steady infected ratio. These results can deepen people's understanding on virus' propa- gation mechanism.
出处 《计算机应用研究》 CSCD 北大核心 2014年第9期2773-2775,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(11247286) 贵州省科学技术基金资助项目(LGK[2013]53 LGK[2014]21)
关键词 病毒传播 变异 真空期 spread of virus variation vacuum period
  • 相关文献

参考文献2

二级参考文献18

  • 1周海平,蔡绍洪,王春香.含崩塌概率的一维沙堆模型的自组织临界性[J].物理学报,2006,55(7):3355-3359. 被引量:11
  • 2DIEKMANN O, HEESTERBEEK J A P. Mathematical epidemiology of infectious disease : model building, analysis and interpretation [ M ]. New York :John Wiley ,2000.
  • 3PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-free networks [ J ]. Phys Rev Lett, 2001,84 (4) : 3200- 3203.
  • 4PASTOR-SATORRAS R, VESPIGNANI A. Epidemic dynamics and endemic states in complex networks [ J]. Phys Rev E ,2001,63:66- 117.
  • 5LIU Zong-hua, LAI Ying-cheng, YE Nong. Propagation and immuniza- tion of infection on general networks with both homogeneous and hete- rogeneous components [ J]. Phys Rev E,2003,67(3) :031911.
  • 6YAN Gang,ZHOU Tao,WANG Jie,et al. Epidemic spread in weighted scale-free network [J]. Chinese Phys Lett,2005,22(2) :510-513.
  • 7Bailey N T J. The Mathematical Theory of Infectious Diseases and Its Applications [M]. New York: Hafner Press,1975.
  • 8Anderson R M, May R M. Infectious Diseases in Humans[M]. Oxford: Oxford University Press, 1992.
  • 9Diekmann O, Heesterheek J A P. Mathematical Epidemiology of Infectious Disease: Model Building, Analysis and Interpretation [ M ]. New York: John Wiley & Son publisher, 2000.
  • 10Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-free networks[J]. Phys Rev Lett, 2001, 84 (4):3 200-3 203.

共引文献8

同被引文献14

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部