期刊文献+

基于朴素贝叶斯模型的一种网络负面信息预警策略研究 被引量:3

Research on Early Warning Strategy of Negative Information on the Internet Based on Naive Bayes Model
下载PDF
导出
摘要 Naive Bayes是一种基于概率的分类器,它用各个类别的先验概率和每个类别出现特定特征的条件概率来预测出现这些特征的个体的类别。针对当前"网络负面信息满天飞"的现状,本文提出了一种基于朴素贝叶斯模型的网络负面信息预警策略。与一般的文本分类不同,针对大规模网络碎片化信息的情感识别一方面对执行效率要求很高,另一方面主要关注有主观情感倾向的词。针对这些问题,我们做了相应的优化策略,如提取情感倾向专用停用词表,细化对否定词的处理等,并以2万条微博数据样本为例进行测试,实验证明这些策略在文本情感识别中具有较为理想的执行效率和准确率。 Naive Bayes is a kind of classifi er based on probability and used for the prediction of individual categories with the prior probability and conditional probability of each category. Targeting at the current "negative information all over the Internet" phenomenon, the paper offers an early warning model based on Naive Bayes method. Different from general text classifi cation, emotion recognition aimed at large-scale network information mainly focuses on words with subjective emotiosn and requires high execution effi ciency. To solve these problems, we conducted the corresponding optimization, such as extracting Emotional Tendency Stop Words List, detailing the management of negative words, and taking 20000 Twitters as sample to test the effectiveness of the model on text emotion recognition. Experiments showed these strategies have ideal execution effi ciency and accuracy.
作者 张扬 崔晨阳
出处 《图书馆杂志》 CSSCI 北大核心 2014年第8期78-82,共5页 Library Journal
基金 中国人民公安大学研究生创新项目"基于模式匹配和机器学习的网络舆情情感倾向性分析模型研究"(项目编号:2013SKX04-5)的研究成果之一
关键词 负面信息 情感分析 机器学习 朴素贝叶斯 舆情监测 预警 Negative information Sentiment analysis Machine learning Naive Bayes Public opinion monitoring Early warning
  • 相关文献

参考文献9

  • 1埃里克·霍弗.狂热分子:群众运动圣经[M].第2版.梁永安,译.桂林:广西师范大学出版社,2011:20-23.
  • 2李普曼.舆论学[M].北京:华夏出版社,1989..
  • 3Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the Semantic Orientation of Adjectives [C]//Proceedings of the 35th Annum Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL, 1997:174-181.
  • 4Turney Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews [C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 2002: 417-424.
  • 5Esuli, Andrea, Sebastiani, Fabrizio. Determining the Semantic Orientation of Terms Through Gloss Classification [C]//Proceedings of CIKM-05, the ACM SIGIR Conference on Information and Knowledge Management, 2005: 617-624.
  • 6R W M Yuen, T Y W Chan et al. Morpheme- based Derivation of Bipolar Semantic Orientation of Chinese Words [C]//Proceedings of the 20th International Conference on Computational Linguistics(COLING-2004), 2004:1008-1014.
  • 7朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 8Sanjiv D, M.Chen. Yahoo! for Amazon: Extracting Market Sentiment from Stock Message Boards [C]// Proceedings of the Asia Pacific Finance Association Annual Conference (APFA), 2001.
  • 9徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:107

二级参考文献26

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181.
  • 3Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346.
  • 4Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424.
  • 5Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86.
  • 6Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124.
  • 7K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28.
  • 8Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351.
  • 9HowNet[R]. HowNet's Home Page. http://www. keenage.com.
  • 10刘群 李素建.基于《知网》的词汇语义相似度的计算[A]..第三届汉语词汇语义学研讨会[C].台北,2002..

共引文献439

同被引文献18

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部