期刊文献+

一类具有时间依赖的病毒动力学模型 被引量:1

Analysis of a Time-dependent Virus Dynamics Model
下载PDF
导出
摘要 研究了一类具有时间依赖的病毒动力学模型.在引入基本再生率R0的基础上,运用持久性理论,证明了当R0>1时,系统至少存在一个正周期解且病毒持续;当R0<1时,病毒清除. A time-dependent virus dynamics model was considered. Based on introducing the basic reproduction ratio, it was proved by applying the persistence theory that there exists at least one positive periodic solution and that the virus persists when R0 〉 1, the virus will dies out if R0 〈 1.
作者 王霞 郭淑利
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2014年第3期316-318,共3页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11171284 11301453) 河南省基础与前沿科技计划立项项目(122300410034 132300410344 142300410198) 河南省教育厅科学技术研究项目(13A110775 12A110019)
关键词 正周期解 基本再生率 持续 Acyclicity定理 positive periodic solution basic reproduction ratio persistence Acyclicity theorem
  • 相关文献

参考文献12

  • 1Wang W, Zhao X Q. Threshold dynamics for compartmental epidemic models in periodic environments[ J]. J Dynam Differential Equations, 2008 20 : 599-717.
  • 2Dowell S F. Seasonal variation in host susceptibility" and cycles of certain infectious diseases[ J]. Emerg Infect Dis, 2001,7: 369-374,.
  • 3Lou Y, Zhao X Q. A climate-based malaria transmission model with structured vector population [ J ]. SIAM J Appl Math, 2010,70:2023-2044.
  • 4Thieme H R. Uniform weak implies uniform strong persistence also for non-autonomous semiflows [ J ]. Proc Am Math Soc, 1999,127 : 2395-2403.
  • 5Thieme H R. Uniform persistence and permanence for non-autonomous semiflows in population biology[ J ]. Math Biosci, 2000,166 : 173-201.
  • 6Zhang T L, Teng Z D. On a SEIRS model in epidemiology[ J]. Bull Math Biol, 2007, 69:2537-2559.
  • 7王霞,陈建启.一类具有非线性感染率的HBV传染病模型的全局性研究(英文)[J].信阳师范学院学报(自然科学版),2012,25(2):141-145. 被引量:4
  • 8王霞,郭红涛.一类带有饱和感染率的时滞SIR传染病模型研究(英文)[J].信阳师范学院学报(自然科学版),2011,24(4):421-424. 被引量:4
  • 9Smith H L. Monotone dynamical systems : an introduction to the theory of competitive and cooperative systems [ M ]. Math Surveys Monogr 41, AMS Providence RI, 1995.
  • 10Kato T. Perturbation theory for linear operators [ M ]. Berlin, Heidelberg : Springer-erlag, 1976.

二级参考文献9

共引文献6

同被引文献8

  • 1Lyapunov A M.The general problem of the stability of motion[M].London:Taylor and Francis,1992.
  • 2Capasso V.Mathematical structure of epidemic systems[M].Berlin:Springer,1993.
  • 3Levin S A,Hallam T G,Gross L J.Applied mathematical ecology[M].New York:Springer,1989.
  • 4Capasso V,Serio G.A generalization of the Kermack-McKendrick deterministic epidemic model[J].Mathematical Biosciences,1978,42(1/2):43-61.
  • 5Xiao D M,Ruan S G.Global analysis of an epidemic model with nonmonotone incidence rate[J].Mathematical Biosciences,2007,208(2):419-429.
  • 6Hale J,Lunel S V.Introduction to functional differential equations[M].New York:Springer-Verlag,1993.
  • 7王霞,陶有德,宋新宇.一类带有肝炎B病毒感染的数学模型的全局稳定性分析(英文)[J].生物数学学报,2009,24(1):1-8. 被引量:14
  • 8王霞,宋强.一类具有吸收效应的时滞病原体免疫模型(英文)[J].信阳师范学院学报(自然科学版),2013,26(1):12-16. 被引量:4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部