期刊文献+

基于二维Gabor的掌纹图像预处理研究 被引量:1

Research on palmprint image preprocessing based on 2D Gabor
下载PDF
导出
摘要 掌纹识别属于相对较新的一种生物特征识别技术,是利用人手掌上丰富的纹理特征来进行身份识别。掌纹图像的质量是影响掌纹识别性能的关键,因此,由掌纹的特点入手,对掌纹图像采用基于形态学方法进行感兴趣区域(ROI)的分割,为了防止由于采集时手放置位置的旋转或偏移导致的掌纹图像的差异,通过中值滤波、二值化、膨胀腐蚀等操作确定了特殊角点,再利用角点连线确定旋转角度,来旋转掌纹图像。然后对掌纹图像感兴趣的区域采取小波阈值法来去除噪声。最后结合Gabor滤波器的方向性,采用基于二维Gabor滤波器对掌纹纹线的特征进行提取。为了验证所提出的掌纹图像预处理方法的有效性,在PolyU掌纹图像库上进行实验并取得了较好的实验效果。 Palmprint recognition is a biometric technology , which makes use of rich texture features on palm for i-dentification .The quality of a palmprint image is the key to the performance of palmprint recognition , therefore , this article starts with the palmprint features .The palmprint image is based on morphological methods for region of interest (ROI) segmentation.In order to prevent the differences of the palmprint image caused by rotation or offset of hand position in image acquisition , the palmprint image was rotated using corner connections to determine the ro-tation angle by means of median filtering , binary technology , the expansion of corrosion and other operations to de-termine the special corner .Then, the wavelet thresholding method was taken to remove the noise of the ROI region . Finally, taking advantage of the directionality of Gabor filter , the palmprint ridge characteristics were abstracted based on 2D Gabor filter.In order to verify the efficiency of proposed method for palmprint image preprocessing , some experiments were made in the PolyU palmprint image database , achieving good results .
出处 《应用科技》 CAS 2014年第3期1-9,共9页 Applied Science and Technology
基金 国家自然科学基金资助项目(61201370) 高等学校博士学科点专项科研基金资助项目(20120131120030) 中国博士后科学基金面上资助项目(2013M530321) 山东大学自主创新基金资助项目(2012GN043 2012DX007)
关键词 掌纹图像预处理 感兴趣区域( ROI) 小波去噪 二维Gabor滤波器 palmprint image preprocessing region of interest (ROI) wavelet denoising 2D Gabor filter
  • 相关文献

参考文献14

  • 1JAIN A, PANKANTI S. Biometrics: personal identification in networked society [ M ]. Boston : Kluwer Academic Pub- lishers, 1999: 1-30.
  • 2孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 3ZHAI L, HU Q. The research of double-biometric identifica- tion technology based on finger geometry & palm print [C ]// International Conference on Artificial Intelligence, Management Science and Electronic Commere. Zhengzhou, China, 2011: 3530-3533.
  • 4ZHANG D, SI-IU W. Two novel characteristics in palmprint verification; datum point invariance and line feature matc- hing[ J ]. Pattern Recognition, 1999, 32 (4) : 696-702.
  • 5束为,荣钢,边肇祺,张大鹏.利用掌纹进行身份自动鉴别方法的研究[J].清华大学学报(自然科学版),1999,39(1):95-97. 被引量:14
  • 6ZHANG D. PolyU palmprint database[ DB/OL]. [ 2013-09- 08]. http ://www. comp. polyu, edu.hk/ biometrics/.
  • 7李文新,夏胜雄,张大鹏,许卓群.基于主线特征的双向匹配的掌纹识别新方法[J].计算机研究与发展,2004,41(6):996-1002. 被引量:34
  • 8戴青云,余英林,张大鹏.掌纹身份识别系统中的定位分割技术[J].广东工业大学学报,2002,19(1):1-6. 被引量:23
  • 9DONOHO D L. De-noising by soft-thresholding [ J ]. IEEE Trans Inform Theory, 1995, 41(3) : 612-627.
  • 10DAUGMAN J. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression [ J ]. IEEE Trans on ASASP, 1988, 16(7) : 1169-1179.

二级参考文献82

  • 1刘博,仲思东.一种基于自适应阈值的SUSAN角点提取方法[J].红外技术,2006,28(6):331-333. 被引量:33
  • 2肖庆涵 董晓雪 等.一种指纹图像的识别方法[J].自动化学报,1984,10(1):69-73.
  • 3束为.用于保安系统的多级指纹验证方法的研究[硕士学位论文].北京:清华大学自动化系,1994..
  • 4[1]Glossary of biometrics terms [R].1998,Association for biometrics(AfB),Intemational Computer Security Association (ICSA).
  • 5[2]R Chellappa,et al.Humnan and machine recognition of face:a survey[J].Proc.IEEE,1995,83 (5):705-740.
  • 6[3]R Brunelli,T Poggio.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 7[4]D L Swets,J Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans.PAMI,1996,18 (8):831-836.
  • 8[5]B Moghaddam,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.PAMI,1997,19(7) :696-710.
  • 9[6]S Y Lee,et al.Recognition of humman front faces using knowledgebased feature extraction and neunofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.
  • 10[7]S Lawtonce,et al.Face recognition:a convolutional neural-network approach [J].IEEE Trans.NN,1997,8(1):98-113.

共引文献215

同被引文献5

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部