期刊文献+

液压系统中粒子群优化神经网络权值的控制算法 被引量:3

Control algorithm based on particle swarm optimization neural network weights in hydraulic system
下载PDF
导出
摘要 针对非线性、时变等缺陷导致传统的控制器控制效果较差、不适应电液伺服系统的现象,提出了用于电液伺服控制的基于粒子群优化算法对神经网络的权值进行学习训练的PSO-NN算法。结合电液伺服系统实例分析,用MATLAB仿真得到了输入阶跃信号和正弦信号时,PSO-NN算法的输出曲线以及适应度曲线;为了展示PSO-NN算法的效果,用BP算法仿真了对应输入阶跃信号和正弦信号的输出。仿真结果表明:在电液伺服系统的控制中,PSO-NN算法性能优于BP算法,系统输出具有更好的收敛性和对输入的跟随性,从而证明PSO-NN算法对于电液伺服系统的控制是合适并有效的。 Considering the control nonlinearity and uncertainties and other defects of intelligent control electro -hy-draulic servo system , PSO-NN algorithm is proposed to use particle swarm optimization algorithm to train neural network weights .Combined with a specific instance of electro-hydraulic servo system , when the system input is step and sine signal , the output and fitness curves of PSO-NN algorithm are simulated by using MATLAB software .In order to demonstrate the result of PSO-BP algorithm, BP algorithm is simulated further .The simulation results show that PSO-NN algorithm is superior to the BP algorithm due to the better output convergence and input following per -formance of the electro-hydraulic servo system , and that PSO-NN algorithm is suitable and effective for electro-hy-draulic servo system control .
出处 《应用科技》 CAS 2014年第3期51-54,共4页 Applied Science and Technology
基金 国家自然科学基金资助项目(51175099)
关键词 粒子群优化算法 BP神经网络 PSO-NN算法 权值训练 电液伺服系统 particle swarm optimization BP neural network PSO-NN algorithm weights training electro-hydrau-lic servo system
  • 相关文献

参考文献8

  • 1姚运涛,李著信,等.液压伺服系统优化设计方法研究[J].后勤工程学院学报,2001,17(1):92-96. 被引量:2
  • 2ZHAO H, DANG K F, LINT Q. A online-trained neural network controller for electro-hydraulic servo system [ C ]// Proceedings of the 4th World Congress on Intelligent Control and Automation. Shanghai, China, 2002: 2983-2986.
  • 3KENNEDY J, EBERHART R. Particle swarm optimization [C ]// Proceedings of IEEE International Conference on Neural Networks. Piscataway, USA, 1995 : 1942-1948.
  • 4GHOBAKHLOO A, EGHTESAD M. Neural network solution for the forward kinematics problem of a redundant hydraulic shoulder[ C]// 31th Annual Conference of IEEE Industrial Electronics Society. Raleigh, USA, 2005: 1999-2004.
  • 5DAS M T, DULGER L C. Control of a four bar mechanism by applying particle swarm optimization [ C ]//13th National Machine Theory Svmoosium. Sivas. Turkey. 2007 : 113-117.
  • 6易方,李著信,马维平,吕楠.一种基于神经网络的电液伺服系统智能控制方法[J].后勤工程学院学报,2008,24(3):59-61. 被引量:1
  • 7袁驰.粒子群算法在PID神经网络优化中的应用[C]//InternationalConferenceonCircuitandSignalProcessing.上海,中国,2010:582-584.
  • 8吴建生,秦发金.基于MATLAB的粒子群优化算法程序设计[J].柳州师专学报,2005,20(4):97-100. 被引量:20

二级参考文献18

共引文献20

同被引文献28

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部