期刊文献+

一种自适应交替的差分混合蛙跳优化算法 被引量:1

An Adaptive Alternating Optimization Algorithm of Differential Shuffled Frog Leaping
下载PDF
导出
摘要 针对混合蛙跳算法在解决高维优化问题时易早熟收敛、求解精度低等问题,提出一种自适应交替的差分混合蛙跳优化算法。采用粒子群算法在短时间内产生一组满足约束条件的初始解,以提高初始解的质量。在此基础上,利用差分进化算法全局搜索能力强、种群多样性好等优点,设计一种自适应选择机制,动态地交替使用混合蛙跳算法和差分进化算法,使两者有机融合、优势互补。对6个经典函数的仿真测试结果表明,该算法可以丰富粒子的多样性,使算法前期和后期都具有较好的寻优能力,且寻优速率、求解精度、稳定性都优于混合蛙跳算法、差分进化算法和差分混合蛙跳算法。 Because of the problems of Shuffled Frog Leaping Algorithm (SFLA) such as premature convergence and low accuracy for hard high-dimensional optimization problems,an adaptive alternating optimization algorithm of differential shuffled frog leaping called ADE-SFLA is presented.In order to improve the quality of the initial solution,this algorithm uses Particle Swarm Optimization (PSO) to generate a group of initial solution that satisfies the constraints.On this basics,it draws on that Differential Evolution (DE) algorithm has strong global search capability,better population diversity,etc.It designs an adaptive selection mechanism to dynamically alternate SFLA and DE,and builds a win-win relationship between them and complementary advantages.Six classic functions of the simulation results show that the algorithm not only can enrich the diversity of particle,but also can make the algorithm have a better pre-and postoptimization ability.Its optimization rate,solution accuracy,stability are better than SFLA and DE,and are also better than the differential SFLA which is compared.
出处 《计算机工程》 CAS CSCD 2014年第8期138-142,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61170120) 江苏省自然科学基金资助项目(BK2011147)
关键词 群智能算法 混合蛙跳算法 差分进化算法 优势互补 多样性 全局优化 swarm intelligence algorithm Shuffled Frog Leaping Algorithm (SFLA) Differential Evolution (DE)algorithm complementary advantage diversity global optimization
  • 相关文献

参考文献11

二级参考文献82

  • 1寇晓丽,刘三阳.基于模拟退火的粒子群算法求解约束优化问题[J].吉林大学学报(工学版),2007,37(1):136-140. 被引量:28
  • 2ELBELTAGI E, HEGAZY T, GRIERSON D. Comparison among five evolutionary-based optimization algorithms [ J ]. Advanced Engineering Informatics, 2005,19(1 ):43-53.
  • 3EUSUFF M M, LANSEY K E. Optimization of water distribution network design using shuffled frog leaping algorithm [ J ]. Journal of Water Resources Planning and Management, 2003,129 ( 3 ) : 210-225.
  • 4LIONG S Y, ATIQUZZAMAN M. Optimal design of water distribution network using shuffled complex evolution [ J ]. The Institution of Engineers, 2004,44( 1 ) :93-107.
  • 5EUSUFF M M. Water resources decision making using meta-heuristic optimization methods[ D ]. Tucson: University of Arizona, 2004.
  • 6ELBEHAIRY H, ELBELTAGI E, HEGAZY T, et al. Comparison of two evolutionary algorithms for optimization of bridge deck repairs [J ]. Computer-Aided Civil and Infrastructure Engineering, 2006,21 (8) :561-572.
  • 7WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) :67-82.
  • 8BIRBIL S I, FANG S C. An electromagnetism-like mechanism for global optimization[ J]. Journal of Global Optimization, 2003,25 (3) :263-282.
  • 9EUSUFF M M,LANSEY K E.Optimization of water distribution network design using the shuffled frog leaping algorithm[J].Water Resources Planning and Management,2003,129 (3):210-225.
  • 10ELBEHAIRY H,ELBELTAGI E.Comparison of two evolutionary algorithms for optimization of bridge deck repairs[J].Computer-Aided Civil and Infrastructure Engineering,2006,21 (8):561-572.

共引文献437

同被引文献21

  • 1高洪元,崔闻.文化蛙跳算法及其在频谱感知中的应用[J].中南大学学报(自然科学版),2013,44(9):3723-3730. 被引量:3
  • 2王燕.反向粒子群算法理论及及其应用研究[D].西安:西安工程大学理学院,2011.
  • 3Eusuff M M, Lansey K E. Optimization of water distribution network design using shuffled frog leaping algorithm [ J J. Journal of Water Re- sources Planning and Management, 2003, 129 (3) : 210 - 225.
  • 4Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms[ J]. Advanced Engineering Informatics, 2005, 19(1) : 43 -53.
  • 5Amiri B, Fathian M, Maroosi A. Application of shuffled frog-leaping algorithm on clustering[ J]. International Journal of Advanced Manufac- turing Technology, 2009, 45 (1/2) : 199 - 209.
  • 6Rahimi-Vahed A, Mirzaei A H. A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly llne sequencing problem [ J]. Computers and Industrial Engineering, 2007, 53 (4) : 642 - 666.
  • 7Rahimi-Vahed A, Mirzaei A H. Solving a bi-criteria pemnutation flow-shop problem using shuffled frog-leaping algorithm[ J]. Soft Computing, 2008, 12(5) : 435 -452.
  • 8Bhaduri A. A clonal selection based shuffled frog leaping algorithm[ C ]//IEEE International Conference on Advance Computing. Piscataway, UJ, USA: IEEE, 2009:125-130.
  • 9孟庆伟.混合蛀跳算法及其应用研究[D].西安:西安电子科技大学,2014.
  • 10Reynolds R G. An introduction to cultural algorithms [ C ]//Proceedings of the 3rd Annual Conference on Evolutionary Programming. San Die- go, NJ, USA: World Scientific Press, 1994: 131- 139.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部