期刊文献+

基于稀疏邻域的特征融合算法及其应用 被引量:1

Feature Fusion Algorithm Based on Sparse Neighborhood and Its Applications
下载PDF
导出
摘要 针对无标签样本和单标签样本的融合学习问题,提出样本稀疏邻域的概念,进而给出基于稀疏邻域的特征融合算法(SNSPDA)。样本的稀疏邻域充分利用稀疏表示的判别属性,增强了具有较大表示系数样本对被表示样本的重构作用。SNSPDA算法可捕获数据的局部几何结构,保持样本间的稀疏重构关系,同时避免单标签样本学习中的过拟合问题。大量单标签图像样本的实验结果表明,SNSPDA算法比仅反映单一数据属性的融合算法具有更高的识别率,如在光照条件变化较大时,该算法的正确识别率分别比稀疏保持判别融合算法与半监督判别融合算法提高了2.14%与17.43%。 Concerning the fusion learning problem of the unlabeled and single labeled samples,this paper gives the concept of samples sparse neighborhood,then further puts forward Sparisity Preserving Discriminant Analysis Based on Sparse Neighborhood (SNSPDA) algorithm.Samples sparse neighborhood makes full use of its discriminant attribute,and SNSPDA reinforces the role of those samples which have big reconstructive coefficients.This algorithm not only captures the local geometry structure,but also maintains the sparse reconstruction relationship between samples.Furthermore,it avoids the overfitting problem during the process of the single labeled sample learning.A mass of experimental evidence from single labeled image samples demonstrates that this fusion feature algorithm has a higher discriminating rate than those fusion methods which only reflect single data attribute.For instance,when the illumination condition changes significantly,the distinguishing rate of SNSPDA raises by 2.14% and 17.43% compared with Sparsity Preserving Discriminant Analysis (SPDA) algorithm and Semi-supervised Discriminant Analysis (SDA) algorithm.
作者 臧飞 杨沁梅
出处 《计算机工程》 CAS CSCD 2014年第8期163-167,共5页 Computer Engineering
关键词 特征融合 稀疏邻域 正则化 几何结构 稀疏重构 特征分解 feature fusion sparse neighborhood regularization geometric structure sparse reconstruction eigen-decomposition
  • 相关文献

参考文献14

  • 1檀敬东,苏雅茹,王儒敬.基于PCA扩展的判别性特征融合[J].模式识别与人工智能,2012,25(2):305-312. 被引量:4
  • 2史红权,徐永杰.直觉模糊多特征融合目标类型识别模型[J].舰船科学技术,2012,34(1):95-98. 被引量:2
  • 3He Xiaofei,Niyogi P.Locality Preserving Projections[C]// Thrun S,Saul L K,Sch'olkopf B.Advances in Neural Information Processing Systems.Vancouver,Canada:[s.n.],2003:327-334.
  • 4He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face Recognition Using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (3):328-340.
  • 5Roweis S T,Sail L K.Nonlinear Dimensionality by Locally Linear Embedding[J].Science,2000,290 (5500):2323-2326.
  • 6Saul L K,Roweis S T.Think Globally,Fit Locally:Unsupervised Learning of Low Dimensional Manifolds[J].Journal of Machine Learning Research,2003,4 (1):119-155.
  • 7Wright J,Allen Y,Ganesh A,et al.Roust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31 (2):210-227.
  • 8畅雪萍,郑忠龙,谢陈毛.基于稀疏表征的单样本人脸识别[J].计算机工程,2010,36(21):175-177. 被引量:7
  • 9张尤赛,赵艳萍,朱志宇.基于PCA特征基压缩传感算法的人脸识别[J].计算机工程,2012,38(13):152-155. 被引量:3
  • 10Qiao Lishan,Chen Songcan,Tan Xiaoyang.Sparsity Preserving Discriminant Analysis for Single Training Image Face Recognition[J].Pattern Recognition Letters,2010,31 (5):422-429.

二级参考文献47

  • 1孙权森,曾生根,王平安,夏德深.典型相关分析的理论及其在特征融合中的应用[J].计算机学报,2005,28(9):1524-1533. 被引量:89
  • 2李明军,刘怡昕,黄先义,刘玉文.基于模糊模式识别的战场目标识别[J].火力与指挥控制,2005,30(8):57-60. 被引量:8
  • 3朱方,王付明.基于模糊信息论的空中目标识别模型研究[J].指挥控制与仿真,2006,28(1):111-115. 被引量:8
  • 4Wang Jie,Plataniotis K N,Lu Juwei,et al.On Solving the Face Recognition Problem with One Training Sample per Subject[J].Pattern Recognition.2006,39(9):1746-1762.
  • 5Tan Xiaoyang,Chen Songcan,Zhou Zhihua,et al.Face Recognition from a Single Image per Person: A Survey[J].Pattern Recognition.2006,39(9):1725-1745.
  • 6Wright J,Ma Yi,Mairal J,et al.Sparse Representation for Computer Vision and Pattern Recognition[J].Proceedings of the IEEE.2010,98(6):1031-1044.
  • 7Candès E J,Tao T.Reflections on Compressed Sensing[J].IEEE Information Theory Society Newslette,2008,58(4): 20-23.
  • 8Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory.2006,52(4):1289-1306.
  • 9Liu Jun,Chen Songcan,Zhou Zhihua,et al.Single Image Subspace for Face Recognition[C]//Proc.of the 3rd International Conference on Analysis and Modeling of Faces and Gestures.Rio de Janeiro,Brazil: Springer-Verlag,2007: 205-219.
  • 10Wright J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2009,31(2):210-227.

共引文献33

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部