期刊文献+

基于DCFT的Chirp矩阵采样重构算法

Reconstruction Algorithm of Chirp Matrix Sampling Based on DCFT
下载PDF
导出
摘要 在Chirp矩阵的压缩采样中,针对离散傅里叶变换(DFT)相关检测算法重构精度较差、可用信号稀疏度有限的问题,提出一种基于离散Chirp-Fourier变换(DCFT)的重构算法。根据信号稀疏度k增加采样数,使采样矩阵具有对k值大的信号有准确重构的能力;选择采样信号k个最大的DCFT幅值所对应的原子索引来击中信号非零元的位置,以减少DFT相关算法中交调干扰造成的最佳原子误检测;利用最小二乘法估计各非零元的幅值,进一步减小重构误差。对长度为1 681的一维信号进行采样和重构实验,结果表明,该算法重构的信号稀疏度增大至DFT相关检测算法的4倍,并且时间复杂度仍为O(kN)。 Aiming at the problem of the poor reconstruction accuracy and the limited sparsity of the signal available of the DFT correlation detection algorithm in the compressed sampling using chirp matrix,this paper proposes a Discrete Chirp-Fourier Transform(DCFT) based reconstruction algorithm.It increases the number of measurements according to the signal sparsity k so that the sampling matrix has the ability of reconstructing accurately the signal having a large value of k.And it selects the atom indexes corresponding to the k largest DCFT amplitude of the sampling signal to hit the nonzero positions to reduce the incorrect detection of the best atoms caused by cross interference in the DFT correlation algorithm.It uses the Least Square method to estimate the amplitudes of nonzero elements to further reduce the reconstruction error.Results of sampling and reconstruction experiments of onedimensional signal with length N of 1 681 show that the DCFT reconstruction algorithm can reconstruct accurately the signal whose sparsity k increases to 4 times as that of the DFT correlation detection algorithm,and has a considerable computational complexity O (kN).
出处 《计算机工程》 CAS CSCD 2014年第8期190-193,200,共5页 Computer Engineering
基金 国家自然科学基金资助项目(60972133)
关键词 压缩采样 DFT相关检测 离散CHIRP-FOURIER变换 交调干扰 最佳原子检测 最小二乘法 compressed sampling DFT correlation detection discrete Chirp-Fourier transform cross interference best atom detection Least Square Method (LSM)
  • 相关文献

参考文献12

  • 1Duarte M F,Eldar Y C.Structured Compressed Sensing From Theory to Applications[J].IEEE Transactions on Signal Processing,2011,59 (9):4053-4085.
  • 2马坚伟,徐杰,鲍跃全,于四伟.压缩感知及其应用:从稀疏约束到低秩约束优化[J].信号处理,2012,28(5):609-623. 被引量:52
  • 3Becker S,Bobin J,Candes E.NESTA:A Fast and Accurate First-order Method for Sparse Recovery[J].SIAM Journal on Imaging Sciences,2011,4 (1):1-39.
  • 4Dai W,Milenkovic O.Subspace Pursuit for Compressive Sensing Signal Reconstruction[J].IEEE Transactions on Information Theory,2009,55 (5):2230-2249.
  • 5Davenport M A,Wakin M B.Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property[J].IEEE Transactions on Information Theory,2010,56(9):4395-4401.
  • 6Candes E J,Tao T.Near-optimal Signal Recovery Form Random Projections:Universal Encoding Strategies[J].IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 7Calderbank R,Howard S,Jafarpour S.Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property[J].IEEE Journal of Selected Topics in Signal Processing,2010,4 (2):358-374.
  • 8Devore R A.Deterministic Constructions of Compressed Sensing Matrices[J].Journal of Complexity,2007,23 (4-6):918-925.
  • 9Li Shuxing,Gao Fei,Ge Gennian.Deterministic Construction of Compressed Sensing Matrices via Algebraic Curves[J].IEEE Transactions on Information Theory,2012,58 (8):5035-5041.
  • 10Howard S D,Calderbank A R,Searle S J.A Fast Reconstruction Algorithm for Deterministic Compressive Sensing Using Second Order Reed-Muller Codes[C]//Proceedings of the 42nd Annual Conference on Information Sciences and Systems.Princeton,USA:IEEE Press,2008:231-239.

二级参考文献79

  • 1J. Ma, F. X. Le Dimet. Deblurring from highly incomplete measurements for remote sensing [ J ]. IEEE. T. Geosci. Remote,2009,47 (3) :792- 802.
  • 2J. Ma. Single-pixel remote sensing [ J]. Geoscience and Remote Sensing Letters, IEEE,2009,6(2) :199-203.
  • 3E. J. Candes, J. Romberg, T. Tao. Stable signal recovery from incomplete and inaccurate measurements [ J]. Com- mun. Pur. Appl. Math,2006,59 (8) : 1207-1223.
  • 4E. J. Candes. Compressive sampling[ C] ///Proceedings of International Congress of Mathematicians. Ztirich, Switz- erland: European Mathematical Society Publishing Hou- se ,2006. 1433-1452.
  • 5E. J. Candes, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incom-plete frequency information [J]. IEEE. T. Inform. The- ory, 2006,52 ( 2 ) : 489-509.
  • 6E. J. Candes, T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies [ J ]. IEEE. T. Inform. Theory,2006,52(12):5406-5425.
  • 7D. L. Donoho. Compressed sensing [J]. IEEE. T. In- form. Theory,2006,52(4) : 1289-1306.
  • 8D. L. Donoho, Y. Tsaig. Fast solution of ll-norm minimi- zation problems when the solution may be sparse [ R ]. Department of Statistics, Stanford University, USA,2008.
  • 9E. J. Candes, M. B. Wakin. An introduction to compressive sampling [J]. IEEE. Signal Proc. Mag,2008,25(2):21-30.
  • 10J. Ma, M. Y. Hussaini. Extensions of compressed ima- ging: flying sensor, coded mask, and fast decoding [ J ]. IEEE. T. Instrum. Meas. , 2011,60 ( 9 ) : 3128-3139.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部