期刊文献+

一种求解图像分割问题的限速-离散蜂群优化算法 被引量:2

A Limited Speed-discrete Bee Colony Optimization Algorithm for Solving Image Segmentation Problem
下载PDF
导出
摘要 为解决图像领域中的归一化彩色图像分割问题,提出一种限速-离散蜂群优化算法。根据问题模型将蜂群算法中的位置重新定义为离散化的位置,增加个体蜂的速度定义;引入一个限速过程,设计限速作用函数,增加种群的多样性,解决了算法早熟收敛的问题,同时在个体蜂的位置更新中采用自适应权重调整策略,提高算法稳定性和收敛速度。仿真实验结果表明,该算法在收敛速度和图像处理效果上优于标准蜂群算法,并验证了该算法在归一化彩色图像分割问题中的高效性和优越性。 This paper proposes a limited speed-discrete bee colony optimization algorithm to solve the normalized color image segmentation problem in image field.According to the problem model,the position of the bee colony algorithm is redefined discrete position,and the speed definition of individual bees is increased.In order to solve the problem of premature convergence,the paper introduces a limited speed process,and designs a limited speed function to increase the diversity of the population.Meanwhile the adaptive weighting adjustment strategy is introduced to update the position of individual bee.So the stability and convergence speed of algorithm is improved.Experimental results show that the algorithm is superior to other similar algorithm in convergence rate and efficiency,and the algorithm in the normalized color image segmentation problem is verified to be efficient and superior.
出处 《计算机工程》 CAS CSCD 2014年第8期212-216,共5页 Computer Engineering
基金 国家自然科学基金资助项目(10974130) 陕西省青年科技新星计划基金资助项目(2011kjxx17) 陕西师范大学研究生培养创新基金资助项目(2013CXS045)
关键词 蜂群算法 限制速度 自适应权重调整策略 图像分割 归一化准则 bee colony algorithm limited speed adaptive weighting adjustment strategy image segmentation normalized criterion
  • 相关文献

参考文献12

  • 1Shi Jianbo,Malik J.Normalized Cuts and Image Segmentation[C]//Proc.of IEEE CS Conf.on Computer Vision and Pattern Recognition.[S.1.]:IEEE Press,1997:731-737.
  • 2Shi Jianbo,Malik J.Normalized Cuts and Image Segmentation[J].IEEE Transactions on Pattern Analysis Machine Intelligence,2000,22 (8):888-905.
  • 3Xu Linli,Li Wenye,Dale S.Fast Normalized Cut with Linear Constraints[C]//Proc.of IEEE Conference on Digital Object Identifier.[S.1.]:IEEE Press,2009:2866-2873.
  • 4Liu Haitao,Wang Yinlong,Yao Huifen.A New Normalized-cut Image Segmentation Algorithm Based on Watershed Transform[J].Applied Mechanics and Materials,2012,235 (1):45-48.
  • 5Beghi A,Cecchinato L,Cosi G,et al.A PSO-based Algorithm for Optimal Multiple Chiller Systems Operation[J].Applied Thermal Engineering,2012,32(1):31-40.
  • 6Lin Zhensi,Zhang Qishan,Liu Hong.Parameters Optimization of GM (1,1) Model Based on Artificial Fish Swarm Algorithm[J].Theory and Application,2012,2 (2):166-177.
  • 7Gollapudi S,Pattnaik S,Bajpai O,et al.Bacterial Foraging Optimization Technique to Calculate Resonant Frequency of Rectangular Microstrip Antenna[J].International Journal of RF and Microwave ComputerAided Engineering,2008,18 (4):383-388.
  • 8Karaboga D,Basturk B.On the Performance of Artificial Bee Colony Algorithm[J].Applied Soft Computing,2008,8(1):687-697.
  • 9Sabat S L,Udgata S K,Abraharm A.Artificial Bee Colony Algorithm for Small Signal Model Parameter Extraction of MESFET[J].Engineering Applications of Artificial Intelligence,2010,23 (1):689-694.
  • 10Yan Gaowei,Li Chuangqin.An Effective Refinement Artificial Bee Colony Optimization Algorithm Based on Chaotic Search and Application for PID Control Tuning[J].Journal of Computational Information Systems,2011,7(9):3309-3316.

二级参考文献14

共引文献59

同被引文献13

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部