摘要
为解决图像领域中的归一化彩色图像分割问题,提出一种限速-离散蜂群优化算法。根据问题模型将蜂群算法中的位置重新定义为离散化的位置,增加个体蜂的速度定义;引入一个限速过程,设计限速作用函数,增加种群的多样性,解决了算法早熟收敛的问题,同时在个体蜂的位置更新中采用自适应权重调整策略,提高算法稳定性和收敛速度。仿真实验结果表明,该算法在收敛速度和图像处理效果上优于标准蜂群算法,并验证了该算法在归一化彩色图像分割问题中的高效性和优越性。
This paper proposes a limited speed-discrete bee colony optimization algorithm to solve the normalized color image segmentation problem in image field.According to the problem model,the position of the bee colony algorithm is redefined discrete position,and the speed definition of individual bees is increased.In order to solve the problem of premature convergence,the paper introduces a limited speed process,and designs a limited speed function to increase the diversity of the population.Meanwhile the adaptive weighting adjustment strategy is introduced to update the position of individual bee.So the stability and convergence speed of algorithm is improved.Experimental results show that the algorithm is superior to other similar algorithm in convergence rate and efficiency,and the algorithm in the normalized color image segmentation problem is verified to be efficient and superior.
出处
《计算机工程》
CAS
CSCD
2014年第8期212-216,共5页
Computer Engineering
基金
国家自然科学基金资助项目(10974130)
陕西省青年科技新星计划基金资助项目(2011kjxx17)
陕西师范大学研究生培养创新基金资助项目(2013CXS045)
关键词
蜂群算法
限制速度
自适应权重调整策略
图像分割
归一化准则
bee colony algorithm
limited speed
adaptive weighting adjustment strategy
image segmentation
normalized criterion