期刊文献+

一种基于网站聚合和语义知识的电影推荐方法 被引量:3

A Film Recommendation Method Based on Website Aggregation and Semantic Knowledge
下载PDF
导出
摘要 针对传统个性化推荐方法中存在的稀疏性、冷启动、过度专业化且准确率低等问题,提出一种基于网站聚合和知识的电影推荐方法。利用网络爬虫聚合源网站对某部电影的相关推荐,得到待推荐电影集,使用电影知识构建基于本体论的电影模型,并在该模型的基础上给出一种学习用户偏好权重的算法,采用SimRank算法和加权平均值计算电影相似度,根据相似度高低向用户进行推荐。实验结果证明,该方法的推荐准确度在非实时推荐场景下较现有方法提高10%以上,且实时推荐的推荐质量有明显提高,在一定程度上解决了稀疏性、冷启动及过度专业化等问题。 To solve the shortcomings in traditional methods of personalized recommendation such as sparsity,cold-start,overspecialization and low accuracy problem,this paper proposes a recommendation method based on Website aggregation and knowledge.It gets a movie set to be recommended by Web crawler aggregating Websites,and also builds an ontologybased film model based on which that proposes an algorithm for learning the weights of user preference.It measures the similarity between movies using SimRank method and the weighted average to recommend to users according to the level of similarity.Experimental results show that the accuracy of this method is improved by about ten percent than the existing methods when it is used on non-real-time recommendation.And quality of recommendations is improved significantly on real-time recommendation.In some extent,sparsity,cold-start,overspecialization problem can be solved.
出处 《计算机工程》 CAS CSCD 2014年第8期277-281,共5页 Computer Engineering
基金 中国科学院基金资助重点项目"面向NGB的互联网视频访问控制应用示范子课题"(KGZD-EW-103-5(5))
关键词 个性化推荐 网络爬虫 网站聚合 本体论 用户偏好 冷启动 personalized recommendation Web crawler Website aggregation ontology user preference cold-start
  • 相关文献

参考文献10

二级参考文献164

  • 1黎星星,黄小琴,朱庆生.电子商务推荐系统研究[J].计算机工程与科学,2004,26(5):7-10. 被引量:46
  • 2余力,刘鲁.电子商务个性化推荐研究[J].计算机集成制造系统,2004,10(10):1306-1313. 被引量:104
  • 3徐凤亚,罗振声.文本自动分类中特征权重算法的改进研究[J].计算机工程与应用,2005,41(1):181-184. 被引量:56
  • 4孙小华,陈洪,孔繁胜.在协同过滤中结合奇异值分解与最近邻方法[J].计算机应用研究,2006,23(9):206-208. 被引量:30
  • 5王煜,周立柱,邢春晓.视频语义模型及评价准则[J].计算机学报,2007,30(3):337-351. 被引量:15
  • 6Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 7Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 8Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 9Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 10Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.

共引文献1866

同被引文献33

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2Juan Cao,Tian Xia,Jintao Li,Yongdong Zhang,Sheng Tang.A density-based method for adaptive LDA model selection[J]. Neurocomputing . 2008 (7)
  • 3Paul Resnick,Hal R. Varian.Recommender systems[J]. Communications of the ACM . 1997 (3)
  • 4Jonghun Park,Sang-Jin Lee,Sung-Jun Lee,Kwanho Kim,Beom-Suk Chung,Yong-Ki Lee.Online Video Recommendation through Tag-Cloud Aggregation. Multimedia, IEEE . 2011
  • 5R. Bell,Y. Koren.Scalable collaborative filtering with jointly derived neighborhoodinterpolation weights. IEEE international conference on data mining (ICDM’’07) . 2007
  • 6R. M. Bell,Y. Koren,C. Volinsky.Modeling relationships at multiple scales to improve accuracy of large recommender systems. KDD . 2007
  • 7Wikipedia.Jaccard similarity. http://en.wikipedia.org/wiki/Jaccard_index . 2016
  • 8Davidson J,Liebald B,Liu J, et al.The YouTube video recommendation system. Proceedings of the fourth ACM conference on Recommender systems . 2010
  • 9Gábor Takács,István Pilászy,Bottyán Németh,Domonkos Tikk.??Major components of the gravity recommendation system(J)ACM SIGKDD Explorations Newsletter . 2007 (2)
  • 10Michael J. Pazzani.??A Framework for Collaborative, Content-Based and Demographic Filtering(J)Artificial Intelligence Review . 1999 (5)

引证文献3

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部