摘要
Hyperlenses based on metamaterials can be applied to subwavelength imaging in the lightwave band. In this letter, we demonstrate both through simulations and experimentally verified results that our proposed half- cylindrical shaped hyperlens can be used for super-resolution microwave focusing in a TE mode. Based on split ring resonators, the hyperlens satisfies a hyperbolic dispersion relationship. Simulations demonstrate that the focused spot size and position are insensitive to the rotation angle of the hyperlens around its geometric center. Experimental results show that a focused spot size 1/3 of the vacuum wavelength is achieved in the microwave band.
Hyperlenses based on metamaterials can be applied to subwavelength imaging in the lightwave band. In this letter, we demonstrate both through simulations and experimentally verified results that our proposed half- cylindrical shaped hyperlens can be used for super-resolution microwave focusing in a TE mode. Based on split ring resonators, the hyperlens satisfies a hyperbolic dispersion relationship. Simulations demonstrate that the focused spot size and position are insensitive to the rotation angle of the hyperlens around its geometric center. Experimental results show that a focused spot size 1/3 of the vacuum wavelength is achieved in the microwave band.
基金
the National Natural Science Foundation of China under Grants Nos.11374235,61271150,61007024,and 10904118