摘要
降低辐射噪声低频线谱能量一直是各国海军提高船舶声隐身性能急需解决的关键问题。动力吸振器被认为是一种解决低频线谱的重要手段之一,在舰船振动控制领域应用广泛。从目前军用船舶动力吸振器使用情况来看,控制频率主要集中在20 Hz以下。本文针对军用船舶声隐身的需求,在100 Hz范围内,以船用风机为例,讨论主系统和动力吸振器结构参数(频率、质量、刚度、阻尼)对动力吸振器减振性能的影响,针对梁长度与刚度的非线性关系,设计连续可变频动力吸振器,在此基础上进行理论与有限元探讨。研究表明,动力吸振器吸振性能主要取决于主系统与激励频率,当主系统与激振频率确定时,适当调节主辅参数值(质量、刚度、阻尼),可达到最佳减振效果。
To reduce the low frequency line spectrum energy among the navy ship underwater radiated noise spectrum is the key issues in the field of navy ship sheath. It need to be resolved as quickly as possible. Dynamic vibration absorber(DVA)is considered as one of the important means, widely used in the field of ship vibration control. From the military ship dynamic vibration absorber using the situation, thecontrol frequency always below 20 Hz. Demand for military vessels acoustic stealth, marine fan are taken as an example, during the 100 Hz frequency range,the relationship between vibration absorber performance with themain system and DVA structure parameters(frequency, mass, stiffnessand damping) was discussed in this paper. Due to DVA nonlinear relationship betweenthelength of the beam with stiffness, a continuous frequency dynamic vibration absorber are designed. Onthebasis of theory andfinite element analysis, DVA vibration absorption performance mainly depends on the host system and theexcitation frequency. When the main system and the excitation frequency are determined, vibration absorption optimal effect can be got, during adjusting the main and DVA parameter values.
出处
《舰船科学技术》
北大核心
2014年第7期48-52,共5页
Ship Science and Technology
关键词
设备振动
动力吸振器
频率可调
理论与数值
参数与性能优化
equipment vibration
DVA
adjustable frequency
theoreticaland numerical analysis
parameters and performanceoptimization