期刊文献+

非圆摆线针轮传动的原理与设计 被引量:1

Principle and Design of Noncircular Pin-Cycloid Gear Transmission
下载PDF
导出
摘要 提出一种用于平行轴间变传动比传动的新型齿轮副——非圆摆线针轮传动.建立非圆摆线针轮传动的啮合坐标系,阐述了非圆摆线针轮共轭齿廓的形成原理.建立非圆针轮齿廓方程,利用坐标变换和齿廓共轭原理,根据圆柱针轮刀具的齿廓方程,结合非圆齿轮加工走刀轨迹及啮合方程,推导出非圆摆线轮的齿廓方程.基于上述理论,运用Matlab软件的数值计算实现了非圆摆线针轮副的参数化设计,得到非圆摆线针轮副的设计实例,并实现SolidWorks环境下的实体建模.运用Adams软件分析该齿轮副实例的运动特性,通过仿真实验结果与理论计算结果的对比,验证了该齿轮传动原理与设计的正确性. Noncircular pin-cycloid transmission is proposed, which can implement variable gear ratio transmission between parallel axes. The meshing coordinate system of the noncircular pin- cycloid gears is set up, with the forming principle of the conjugate profile described. The tooth profile equation of the noncircular pin gear is established, then that of the cycloidal gear is derived through coordinate system transformation, based on the conjugate tooth profile theory, the circular pin gear cutting tool profile equation, and the noncircular pin gear cutting tool path and mesh equation. The parametric design of the gear pair is obtained by Matlab program. The design example of the noncircular pin-cycloid gear is achieved. And the three dimension model is established by SolidWorks. Based on the kinematics analysis of the noncircular pin-cycloid drive by Adams software, the validity of the principle and design of noncircular pin-cycloid drive is verified through the contrast analysis between the experimental and theoretical arithmetic results.
作者 林超 王延涛
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第8期1190-1194,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(51275537)
关键词 齿轮传动 非圆齿轮 摆线针轮传动 齿廓方程 参数化设计 gear transmission noncircular gear pin-cycloid gear transmission tooth profile equation parametric design
  • 相关文献

参考文献9

  • 1Litvin F L. Gear geometry and applied theory [ M ]. New York: Prentice Hall, 1994.
  • 2Chen B K, Zhong H, Liu J Y, et al. Generation and investigation of a new cycloid drive with double contact[ J]. Mechanism and Machine Theory ,2012,49:270 - 283.
  • 3Litvin F L, Demenego A, Vecchiato D. Formation by branches of envelope to parametric families of surfaces and curves[J] Computer Methods in Applied Mechanics and Engineering,2001,190 (35/36) :4587 - 4608.
  • 4Demenego A, Vecchiato D, Litvin F L, et al. Design and simulation of meshing of a cycloidal pump [J]. Mechanism and Machine Theory,2002,37 ( 3 ) :311 - 332.
  • 5Vecchiato D, Demenego A, Argyris J, et al. Geometry of a cycloidal pump [ J]. Computer Methods in Applied Mechanics and Engineering ,2001,190 ( 18/19 ) :2309 - 2330.
  • 6Shin J H, Kwon S M. On the lobe profile design in a cycloid reducer using instant velocity center[J] Mechanism and Machine Theory ,2006,41 ( 5 ) :596 - 616.
  • 7Shin J H, Chang S, Kwon S M, et al. New shape design method of an epicycloidal gear for an epicycloid drive [ C ]// ICMIT 2005: Mechatronics, MEMS, and Smart Materials. [ S. 1. ] : SPIE ,2005:60401 G1 - Gr.
  • 8Lin C, Gong H, Nie N, et al. Geometry design, three- dimensional modeling and kinematic analysis of orthogonal fluctuating gear ratio face gear drive [ J ]. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science,2013,227 (4) :779 - 793.
  • 9李建刚,吴序堂,毛世民,贺敬良.非圆齿轮齿廓数值计算的研究[J].西安交通大学学报,2005,39(1):75-78. 被引量:47

二级参考文献4

  • 1吴从炘 唐余勇.微分几何讲义[M].北京:高等教育出版社,1985.10-47.
  • 2Bair B W. Computer aided design of elliptical gears[J]. Journal of Mechanical Design,2002, 124(12) :787-793.
  • 3Bair B W. Computer aided design of elliptical gears[J]. Journal of Mechanical Design,2002, 124(12) :787-793.
  • 4李建刚,吴序堂,毛世民,贺敬良.交错轴圆柱端面齿盘共轭齿面的数值计算方法[J].西安交通大学学报,2003,37(9):917-919. 被引量:3

共引文献46

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部