期刊文献+

放线菌蛋白质组学研究进展 被引量:3

Advances in actinobacterial proteomics
原文传递
导出
摘要 蛋白质是生理功能的执行者,是生命现象的直接体现者,蛋白质组学旨在阐明生物体全部或部分蛋白质在生命活动中的作用和功能。随着组学理论基础和技术方法的逐渐成熟,蛋白质组学的研究被提高到了前所未有的高度。放线菌与人类的生产和生活关系极为紧密,是产生抗生素和酶制剂的主要来源。近130多年的放线菌系统学研究和2001年模式菌株的全基因组测序,为功能基因组研究奠定了基础。与先前的基因组学和转录组学相比,放线菌蛋白质组学能更直接、更准确地解释生命现象,得到了快速发展,并受到研究者的高度关注。近年来放线菌蛋白质组学的研究主要包括复杂形态分化和发育过程、非凡的环境适应能力、与植物共生固氮、代谢机理及特殊功能、病原放线菌致病性和筛查天然产物等几个方向,为进一步促进放线菌蛋白质组学发展奠定了基础。 Protein is the executor of physiological function, and direct embodiment of the life phenomena. Proteomics aims to systematically clarify all or parts of proteins' role and function in life movement. In post genome era, proteomics began to play more important role in life science field. Actinobacteria are closely linked to human production and life, which have produced many clinically important secondary metabolites, including antibiotics, antitumorals and enzymes. Actinobacterial systematics and its model organism Streptomyces coelicolor in 2001 genome sequence laid the foundation for further functional genomic studies. Actinobacterial proteomics was more directly and exactly to interpret the activity of life than genomics and transcriptomics, which grew much faster and received so much attention from scientists in the near years. Complex morphological differention, stronge environment adaptiveness, nitrogen-fixing capacity, metabolic mechanism, pathogenicity and natural produces' discovery were systematically reviewed in this study, which was expected to be the basis for promoting Actinobacterial proteomics study in the near future.
出处 《生物工程学报》 CAS CSCD 北大核心 2014年第7期1044-1058,共15页 Chinese Journal of Biotechnology
基金 国家自然科学基金(Nos.31270054,31070673,31170780) 国家重点基础研究发展计划(973计划)(No.2011CB910600)资助~~
关键词 放线菌 蛋白质组学 双向电泳 质谱 机理 actinobacteria, proteomics, 2-dimensional electrophoresis, mass spectrum, mechanism
  • 相关文献

参考文献83

  • 1中国遗传学会第九次全国会员代表大会暨学术探讨会[EB/OL].[2013-12-14].http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYL201309001002.htm.
  • 2Bentley SD, Chater KF, Cerdeno-Tarraga AM, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417(6885): 141-147.
  • 3Yague P, Garcia AR, Garcia MT, et al. Transcriptomic analysis of Streptomyces coelicolor differentiation in solid sporulating cultures: first compartmentalized and second multinucleated mycelia have different and distinctive transcriptomes. PLoS ONE, 2013, 3(8): e60665.
  • 4Hesketh AR, Chandra G, Shaw AD. Primary and secondary metabolism, and post-translational protein modifications, as portrayed by proteomie analysis of Streptomyces coelicolor. Mol Microbiol, 2002, 4(4): 917-932.
  • 5Lian W, Jayapal KP, Charaniya S, et al. Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyees eoelicolor A3(2). BMC Genomies, 2008, 9: 56.
  • 6Ohnishi Y. Studies on regulation of secondary metabolism and morphogenesis of Streptomyces by DNA microarray analysis. NISR Research GRANT, 2007.
  • 7Gatewood ML, Bralley P, Weil MR, et al. RNA-Seq and RNA immunoprecipitation analyses of the transcriptome of Streptomyces coelicolor identify substrates for RNase III. J Microbiol, 2012,194(9): 2228.
  • 8Im JH, Kim MG, Kim ES. Comparative transeriptome analysis for avermeetin overproduction via Streptomyces avermitilis microarray system. J Microbiol Biotech, 2007, 17(3): 534-538.
  • 9Alloisio N, Queiroux C, Fournier P, et al. The Frankia alni symbiotic transcriptome. Mol Plant Microbe Interact, 2010, 23(5): 593-607.
  • 10Bickhart DM, Benson DR. Transcriptomes of Frankia sp. strain Cci3 in growth transitions. BMC Microbiol, 2011, 11: 192.

二级参考文献20

  • 1Washburn MP,Wolters D,Yates Ⅲ JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology.Nat Biotechnol, 2001,19: 242 - 247
  • 2Wu CC, MacCoss MJ, Howell KE et al. A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol, 2003,21: 532 - 538
  • 3Vohradsky J, Li XM, Tompson CJ. Identification of prokaryotic developmental stages by statistical analysis of two-dimensional gel patterns. Electrophoresis, 1997,18:1418 - 1428
  • 4Hesketh AR, Chandra G, Shaw AD et al Primary and seeondary metabolism, and post-translational protein modifications, as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol,2003,46:917 - 932
  • 5Wu CC, Yates JR. The application of mass spectrometry to membrane proteomics. Nat Biotechnol, 2003,21: 262 - 267
  • 6Yang KQ, Han L, Ayer SW et al. Accumulation of the angucycline antibiotic rablelomycin after disruption of an oxygenase gene in the jadomycin B biosynthetic gene cluster of Streptomyces venezuelae.Microbiology, 1996,142:123 - 132
  • 7Compton SJ, Jones CG. Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem, 1985,151:369 - 374
  • 8Sadygov RG, Eng J, Durr E et al. Code development to improve the efficiency of automated MS/MS spectra interpretation. J Proteome Res, 2002,1: 211 - 215
  • 9Wolter DA, Washiburn MP, Yates JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem, 2001,73: 5683- 5690
  • 10.[EB/OL].http://www.sanger.ac.uk/Projects/S_coelicolor,.

共引文献9

同被引文献34

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部