期刊文献+

水化硅酸钙动态力学性能的分子动力学模拟研究 被引量:2

Molecular Dynamic Simulation for Mechanical Properties of C-S-H
下载PDF
导出
摘要 对水泥主要水化产物——水化硅酸钙的力学特性进行了分子动力学模拟。采用Hamid 1.1纳米托贝莫来石作为水化硅酸钙的初始结构,通过分子动力学模拟,获得水化硅酸钙的拉伸和压缩应力应变关系,并考虑了应变率和原子数对力学特性的影响。分子动力学模拟研究发现,计算峰值应力、峰值应变都较宏观试验结果高出很多;拉伸峰值应力较压缩峰值应力要小;峰值应力、峰值应变和弹性模量随着应变率的增加而增加,随着模拟晶胞体积(原子数)的增加而降低。研究表明采用分子动力学模拟能获得原子尺度水化硅酸钙动态力学性能,为揭示水泥基材料动态力学性能微观机理奠定了基础。 A molecular dynamic simulation for mechanical properties of calcium silicate hydrate (C S H) is carried out in this paper. C-S-H is the most important products from cement hydration. Hamid 1.1 nm tobermorite is used as the initial structure of C-S-H. Stress-strain relationships of both compressive and tensile behavior are calculated, and the effect of strain rate and number of atoms on the mechanical properties during the simulation is further investigated. Research results show that both the peak stress and peak strain at nano-scale are much higher than that obtained from macro scale experiments. Further simulation of different strain rates and volumes shows that the peak stress, peak strain and elastic modulus increase with the increasing strain rate, while decrease with the increase of volume (atom numbers). Research results indicate that the mechanical properties of C-S H at atomic scale can be achieved by molecular dynamic simulation. This research also produces a fundamental achievement to reveal the mechanism for dynamic strength increasing of cement based materials at micro scale.
出处 《防灾减灾工程学报》 CSCD 北大核心 2014年第3期277-282,共6页 Journal of Disaster Prevention and Mitigation Engineering
基金 国家自然科学基金项目(50979032 51178162) 中央高校基本科研业务费(2011B14614 2013B05514)资助
关键词 水化硅酸钙(C-S-H) 分子动力学 动态力学特性 Calcium-Silicate-Hydrate molecular dynamic simulation dynamic mechanical properties
  • 相关文献

参考文献14

  • 1Jennings H M, Bullard J W. From electron to infra- structure: engineering concrete from the bottom up [J]. Cement and Concrete Research, 2 011,41 (7) : 7 2 7- 735.
  • 2Garboczi E J. Concrete nanoscience and nanotechnology: definitions and applications[C]//Nanotechnology in Construction: Proceedings of the NICOM3 (3re International Symposium on Nanotechnology in Construction), Springer Berlin Heidelberg, 2009. 81-88.
  • 3Cong X, Kirkpatrick R J. ^29Si MAS NMR study of the structure of Calcium Silicate Hydrate[J]. Advanced Cement Based Materials, 1996,3 (3-4) : 144-156.
  • 4Yu P, Kirkpatrick R J, Poe B, et al. Structure of Calcium Silicate Hydrate(C-S-H): near-, mid-, and far- infrared spectroscopy[J]. Journal of the American Ce- ramic Society, 1999,82(3) :742-748.
  • 5Zhang X, Chang W, Zhang T, et al. Nanostructure of calcium silicate hydrate gels in cement paste[J]. Journal of the American Ceramic Society, 2000,83 (10) : 2600-2604.
  • 6Skinner L B, Chae S R, Benmore C J, et al. Nano- structure of calcium silicate hydrates in cements[J]. Physical Review Letters, 2010,104(19) 1-4.
  • 7Taylor H F W. Nanostructure of C-S-H: current sta- tus[J]. Advanced Cement Based Materials, 1993, 1 (1) :38-46.
  • 8Taylor H F W. Proposed structure for calcium silicate hydrate gel[J]. Journal of the American Ceramic Society, 1986,69(6) :464-467.
  • 9Pellenq R J M, Kushimac A, Shahsavarib R, et al. A realistic molecular model of cement hydrate[C]//Proceedings of the National Academy of science of the United States of America. US: [s. n. ], 2009. 16102- 16107.
  • 10Faucon P, Delaye J M, Virlet J, et al. Study of the structural properties of the C-S-H(I) by molecular dy- namics simulation[J]. Cement and Concrete Research, 1997,27(10) : 1581-1590.

同被引文献28

  • 1Bouzoubaa N, Zhang M H, Malhotra V M. Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cement and Concrete Research, 2001;31 (10) : 1393-1402.
  • 2Coutinho J S. The combined benefits of CPF and RHA in improving the durability of concrete structures. Cement and Concrete Compos- ites, 2003;25(1): 51-59.
  • 3Song P S, Hwang S. Mechanical properties of high-strength steel fi- ber-reinforced concrete. Construction and Building Materials, 2004; 18(9) : 669-673.
  • 4Topcu I B, Canbaz M. Effect of different fibers on the mechanical properties of concrete containing fly ash. Construction and Building Materials, 2007 ;21 (7) : 1486-1491.
  • 5Taylor H F W. Proposed structure for calcium silicate hydrate gel. Journal of the American Ceramic Society, 1986 ;69 (6) : 464-467.
  • 6Pellenq R J M, Kushima A, Shahsavari R, et al. A realistic molecu- lar model of cement hydrates. Proceedings of the National Academy of Sciences, 2009 ; 106 ( 38 ) : 16102-16107.
  • 7Hou D, Zhu Y, Lu Y, et al. Mechanical properties of calcium sili- cate hydrate (C-S-H) at nano-scale: a molecular dynamics study. Materials Chemistry and Physics, 2014 ; 146 ( 3 ) : 503-511.
  • 8Merlino S, Bonaccorsi E, Armbruster T. Tobermorites : their real structure and order-disorder (OD) character. American Mineralogist, 1999 ;84 : 1613-1621.
  • 9Merlino S, Bonaccorsi E, Armbruster T. The real structures of cli- notobermorite and tobermorite 9 OD character, polytypes, and structural relationships. European Journal of Mineralogy, 2000; 12 (2) : 411-429.
  • 10Hamid S A. The crystal structure of the 11A natural tobermorite Ca2.25 [ Si307. 5 (OH) 1.5 ] 1H2O- Zeitschrift ftir Kristallographie- Crystalline Materials, 1981 ;154(1-4) : 189-198.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部