摘要
TiClx (x=2.17) was prepared by using titanium sponge to reduce the concentration of TiCl4 in a NaCl-KCl melt under negative pressure. The as-prepared NaCl-KCl-TiClx melt was employed as the electrolyte, and two parallel crude titanium plates and one high-purity titanium plate were used as the anode and cathode, respectively. A series of electrochemical tests were performed to investigate the influence of electrolytic parameters on the current efficiency and quality of cathodic products. The results indicated that the quality of cathodic products was related to the current efficiency, which is significantly dependent on the current density and the initial concentration of titanium ions. The significance of this study is the attainment of high-purity titanium with a low oxygen content of 30× 10^-6.
TiClx (x=2.17) was prepared by using titanium sponge to reduce the concentration of TiCl4 in a NaCl-KCl melt under negative pressure. The as-prepared NaCl-KCl-TiClx melt was employed as the electrolyte, and two parallel crude titanium plates and one high-purity titanium plate were used as the anode and cathode, respectively. A series of electrochemical tests were performed to investigate the influence of electrolytic parameters on the current efficiency and quality of cathodic products. The results indicated that the quality of cathodic products was related to the current efficiency, which is significantly dependent on the current density and the initial concentration of titanium ions. The significance of this study is the attainment of high-purity titanium with a low oxygen content of 30× 10^-6.
基金
the National Science Foundation of China(Nos.50934001 and 51322402)
the National High-Tech Research and Development Program of China (No.2012AA062302)
the Program of the Co-construction with Beijing Municipal Commission of Education of China (Nos.00012047 and 00012085)
the Program for New Century Excellent Talents in Universities(NCET-11-0577)
the Fundamental Research Funds for the Central Universities(No.FRF-AS-11-003A)