期刊文献+

扩展约束的半监督谱聚类算法研究 被引量:2

Research of constraints-expansion semi-supervised spectral clustering algorithm
下载PDF
导出
摘要 通过对几种典型聚类算法的分析和比较,提出了一种新的聚类算法,基于扩展约束的半监督谱聚类算法,简称CE-SSC。这种算法扩展了已知约束集,通过密度敏感距离改变样本点的相似关系,结合半监督谱聚类进行聚类。在UCI基准集上的仿真实验结果证明,基于扩展约束的半监督谱聚类算法具有良好的聚类效应。 Based on several typical clustering algorithm analysis and comparison, this paper proposes a new clustering based on constraint expansion(CESSC). This algorithm expands the known constraints set, changes the similarity relation of the sample points through the density-sensitive path distance, and then combines with semi-supervised spectral clustering to cluster. Experimental results on UCI benchmark data sets prove that CESSC algorithm has good clustering effect.
出处 《计算机工程与应用》 CSCD 2014年第15期177-180,共4页 Computer Engineering and Applications
基金 湖南省科技厅项目(No.2010GK3021)
关键词 半监督学习 成对约束 半监督谱聚类 距离矩阵 semi-supervised learning pair-wise constraint semi-supervised spectral clustering distance matrix
  • 相关文献

参考文献1

二级参考文献6

  • 1Wagstaff K,Cardie C,Rogers S,et al.Constrained K-Means Clustering with Background Knowledge[C]//Proceedings of the 18th International Conference on Machine Learning.San Francisco,CA.USA:Morgan Kaufmann Publishers Inc.,2001:577-584.
  • 2Basu S,Banerjee A,Mooney R.Active Semi-supervision for Paitwise Constrained Clustering[C]//Proceedings of the SIAM International Conference on Data Mining.FL,USA,[s.n.],2004:333-344.
  • 3Klein D,Kamvar S D,Manning C.,From Instance-level Constraints to Space-level Constraints:Making the Most of Prior Knowledge in Data Clustering[C]//Proceedings of the 19th International Conference on Machine Learning.San Francisco,CA,USA:Morgan Kaufmann Publishers Inc.,2002:307-314.
  • 4Chapelle O,Zien A.Semi-supervised Classification by Low Density Separmion[EB/OL].(2005-10-30).http://citeseex.ist.psu.edu/chapelle05semisupervised.html.
  • 5Fischer B,Roth v,Buhmann J M.Clustering with the Connectivity Kernel[C]//Proceedings of the NIPS.Cambridge.MA,USA:MH Press,2004.
  • 6Chang Hong,Yeung D Y.Locally Linear Metric Adaptation with Application to Semi-supervised Clustering and Image Retrieval[J].Pattern Recognition,2006,39(7):1253-1264.

共引文献6

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部