摘要
通过对几种典型聚类算法的分析和比较,提出了一种新的聚类算法,基于扩展约束的半监督谱聚类算法,简称CE-SSC。这种算法扩展了已知约束集,通过密度敏感距离改变样本点的相似关系,结合半监督谱聚类进行聚类。在UCI基准集上的仿真实验结果证明,基于扩展约束的半监督谱聚类算法具有良好的聚类效应。
Based on several typical clustering algorithm analysis and comparison, this paper proposes a new clustering based on constraint expansion(CESSC). This algorithm expands the known constraints set, changes the similarity relation of the sample points through the density-sensitive path distance, and then combines with semi-supervised spectral clustering to cluster. Experimental results on UCI benchmark data sets prove that CESSC algorithm has good clustering effect.
出处
《计算机工程与应用》
CSCD
2014年第15期177-180,共4页
Computer Engineering and Applications
基金
湖南省科技厅项目(No.2010GK3021)
关键词
半监督学习
成对约束
半监督谱聚类
距离矩阵
semi-supervised learning
pair-wise constraint
semi-supervised spectral clustering
distance matrix