期刊文献+

改进非支配排序进化算法在下料问题中的应用

Application for cutting stock problems based on improved non-dominated sorting evolution algorithm
下载PDF
导出
摘要 针对一维下料问题,提出了减少废料、减少下料设置时间和减少可回收余料的三目标优化模型,用改进的非支配排序进化算法求出问题的Pareto最优解集,运用逼近理想解方法从解集中选出一个满意解作为下料方案,各优化目标的权重用CRITIC法算出。仿真实验证明了所提出的方法可以有效解决该类多目标下料问题。 A multi-objective cutting stock problem is studied. The objects are to minimize the non-reuse materials, the cutting waiting time and usable leftovers. A decision-making method for this cutting stock problem is designed. The Pareto-optimal set is gotten by using the improved non-dominated sorting heuristic evolutionary algorithms. The weight of every object is calculated by the CRITIC method. A satisfactory solution, which is regarded as cutting scheme, is found from the Pareto-optimal set by employing the multi-attribute decision making method. The results of experimentation show that the proposed method is effective.
出处 《计算机工程与应用》 CSCD 2014年第15期244-248,共5页 Computer Engineering and Applications
基金 国家自然科学基金重点基金(No.71231004) 国家自然科学基金(No.71171071) 安徽省高校省级自然科学研究项目(重点)(No.KJ2011A215)
关键词 一维下料 多目标优化 进化算法 多属性决策 one-dimensional cutting stock problem multi-objective optimization heuristic evolutionary algorithm multi-attribute decision making
  • 相关文献

参考文献12

  • 1Gradisar M,Trkman EA combined approach to the solu- tion to the general one-dimensional cutting stock prob- lem[J].Computers and Operations Research, 2005, 32: 1793-1807.
  • 2阎春平,宋天峰,刘飞.面向可制造性的两阶段一维优化下料方法[J].计算机辅助设计与图形学学报,2009,21(12):1785-1790. 被引量:4
  • 3Lu Qiang, Wang Zhiguang, Chen Ming.An ant colony optimization algorithm for the one-dimensional cutting stock problem with multiple stock lengths[C]//Fourth Inter- national Conference on Natural Computation, ICNC'08, 2008 : 475-479.
  • 4Huo Yingyu, He Kejing, Zhang Rengui, et al.MHA: a mixed heuristic algorithm for the cutting stock problem[C]// International Conference on Information and Automation, ICIA' 09,2009 : 460-465.
  • 5Chen Chuen-Lung, Hart S M,Tham W M.A simulated annealing heuristic for the one dimensional cutting stock problem[J].European Journal of Operation Research, 1995, 32:522-535.
  • 6Yang C T, Sung T C, Weng W C.An improved tabu search approach with mixed objective function for one-dimen- sional cutting stock problems[J].Advances in Engineering Software, 2006,37 : 502-513.
  • 7Gradisar M, Resinovic G, Kljajic M.A hybrid approach for optitfiization of one-dimensional cutting[J].European Jour- nal of Operational Research, 1999, 119 (3) : 719-728.
  • 8Vasko F J,Newhart D D,Kenneth L,et al.A hierarchical approach for one-dimensional cutting stock problems in the steelindustry that maximizes yield and minimizes over- grading[J].European Journal of Operational Research, 1999, 114(1) :72-82.
  • 9Paolo T.Optimization engineering techniques for exact solution of NP-hard combinatorial optimization problems[J]. European Journal of Operational Research,2000, 125 (2) : 222-238.
  • 10包奇金宝,姜静清,宋初一,梁艳春.基于粒子群与模拟退火算法的板材优化下料[J].计算机工程与应用,2008,44(26):246-248. 被引量:6

二级参考文献19

  • 1邢长征,孙玉庆.基于模拟退火遗传算法的板材优化下料[J].辽宁工程技术大学学报(自然科学版),2006,25(3):406-408. 被引量:2
  • 2龚坚,刘飞,徐宗俊.定长条材优化下料的实用算法研究[J].重庆大学学报(自然科学版),1997,20(1):92-97. 被引量:5
  • 3Gilmore P C,Gomory R E.A linear programming approach to the cutting stock problem[J].Operations Research, 1961,9:849-859.
  • 4Gilmore P C, Gomory R E.Multistage cutting stock problems of two and more dimensions[J].Operations Research, 1965,13:94-120.
  • 5Jokobs S.On genetic algorithms for the packing of palygons[J].European Journal of Operational Research, 1996,88:165-181.
  • 6Lai K K,Chan W M.Developing a simulated annealing algorithm for the cutting stock problem[J].Computer and Industrial Engineering, 1997,33:115-127.
  • 7Leung T W,Yung C H,Troutt M D.Applications of genetic search and simulated annealing to the two-dimensional non-guillotine cutting stock problem[J].Computer and Industrial Engineering,2001,40: 201-214.
  • 8Jiang J Q,Liang Y C, Shi X H, et al.A hybrid algorithm based on PSO and SA and its application for two-dimensional non-guillotine cutting stock problem[C]//Bubak M.LNCS 3037:Proceedings of 4th International Conference on Computational Science. Berlin: Springer, 2004: 666-669.
  • 9Kennedy J,Eberhary R C.Particle swarm optimization[C]//Proceedings of IEEE Conference on Neural Networks,Piscataway,NJ,1995: 1942-1948.
  • 10Shi X H,Wan L M,Lee H P,et al.An improved genetic algorithm with variable population-size and a PSO-GA based hybrid evolutionary algorithm[C]//Second International Conference on Machine Learning and Cybernetics,2003:1735-1740.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部