期刊文献+

外源性NGF对APP/PS1转基因小鼠学习记忆能力的影响 被引量:2

Effects of exogenous NGF on learning and memory abilities of the APP/PS1 transgenic mice
原文传递
导出
摘要 目的观察外源性神经生长因子(nerve growth factor,NGF)对APP/PS1转基因小鼠学习记忆能力的影响和环磷酸腺苷反应元件结合蛋白(cAMP response element bling protein,CREB)蛋白的调节作用。方法实验分为野生组(雄性5月龄C57BL/6小鼠6只,鼻腔给予生理盐水),AD组(雄性5月龄APP/PS1小鼠6只)和AD+NGF组(雄性5月龄APP/PS1小鼠6只,鼻腔给予小鼠NGF治疗14w),应用Morris水迷宫检测小鼠的学习记忆能力变化,应用Western blot检测小鼠脑内CREB蛋白、p-CREB蛋白的表达。结果 AD+NGF组小鼠的潜伏期和找到平台前所经过的总路程均显著低于AD组小鼠,经过目标平台位置的次数明显高于AD组小鼠,游泳总路程和平均游泳速度均明显低于AD组小鼠。外源性NGF上调APP/PS1转基因小鼠脑内CREB蛋白和p-CREB蛋白的表达。结论外源性NGF改善APP/PS1转基因小鼠的学习记忆能力可能与上调CREB和p-CREB蛋白的表达相关。 Objective To study the effects of exogenous NGF on learning and memory abilities and the expression of CREB protein in the APP/PS1 transgenic mice. Methods The mice were divided into: wild group, APP/PS1transgenic group and APP/PS1+ NGF group(treated with NGF via nasal cavity for 14 weeks). Morris water maze test was applied to examine the changes of learning and memory of the mice. Western blot technique was used to test the expressions of CREB proteins and p-CREB proteins in the mice brain. Results The escape latency and the total distance of finding platforms, the total swimming distances and the average swimming speeds were notably lower in AD+NGF group than in AD mice, but the times of passing target platform location were obviously higher in AD+NGF group than in AD mice. The exogenous NGF upregulated the expressions of CREB proteins and p-CREB proteins in brain of APP/PS1 transgenic mice. Conclusion The improvement of learning and memory abilities of the APP/PS1 transgenic mice by exogenous NGF might be related to upregulation of CREB and p-CREB protein expression.
出处 《解剖科学进展》 CAS 2014年第4期344-348,共5页 Progress of Anatomical Sciences
关键词 神经生长因子 阿尔茨海默病 APP PS1转基因小鼠 CREB nerve growth factor Alzheimer’s disease APP/PS1 transgenic mice cAMP response element bling protein
  • 相关文献

参考文献19

  • 1Hebert LE,Scherr PA,Bienias JL,et al.Alzheimer disease in the US population:prevalence estimates using the 2000 census[J].ArchNeurol,2003,60(8):1119-1122.
  • 2Citron M.Strategies for disease modification in Alzheimer's disease[J].Nat Rev Neurosci,2004,5(9):677-685.
  • 3Crimm MO,Tschape JA,Grimm HS,et al.Altered membrane fluidity and lipid raft composition in presenilin-deficient cell[J].Acta Neurol Scand,Suppl,2006,185:27-32.
  • 4DeKosky ST,Scheff SW,Markesbery WR.Laminar organization of cholinergic circuits in human frontal cortex in Alzheimer's disease and aging[J].Neurology,1985,35(10):1425-1431.
  • 5Robbins TW,McAlonan G,Muir JL,et al.Cognitive enhancers in theory and practice:studies of the cholinergic hypothesis of cognitive deficits in Alzheimer's disease[J].Behav Brain Res,1997,83(1-2):15-23.
  • 6Young M,Blanchard MH,Sessions F,et al.Subunit structure of high molecular weight mouse nerve growth factor[J].Biochemistry,1988,27(18):6675-6681.
  • 7Swaab DF.Reactivation of atrophic neurons in Alzheimer's disease[J].Neurol Res,2003,25(6):652-660.
  • 8Lad SP,Neet KE,Mufson EJ.Nerve growth factor:structure,function and therapeutic implications for Alzheimer's disease[J].Curr Drug Targets CNS Neurel Disord,2003,2(5):315-334.
  • 9Chen XQ,Fawcett JR,Rahman YE,et al.Delivery of nerve growth factor to the brain via the olfactory pathway[J].Alzheimers Dis,1998,1(1):35-44.
  • 10Arendash GW,King DL,Gordon MN,et al.Progressive,age-related behavioral impairments in transgenic mice carrying both mutant amyloid precursor protein and presenilin-1 transgenes[J].Brain Res,2001,891(1-2):42-53.

同被引文献21

  • 1Wang C Y, Zheng W, Wang T, et al. Huperzine A activates Wnt/beta-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model[J]. Neuropsy- chopharmacology, 2011,36(5): 1073-1089.
  • 2Ahmed F, Ghalib R M, Sasikala P, et al. Cholinesterase inhibitors from botanicals[J]. Pharmaeogn Rev, 2013, 7 (14) : 121-130.
  • 3Chen X Q, Fawcett J R, Rahman Y E, et al. Delivery of nerve growth factor to the brain via the olfactory pathway[J]. Alzhei- mers Dis, 1998,1(1): 35-44.
  • 4De Rosa R, Garcia A A, Braschi C, et al. Intranasal admini- stration of nerve growth factor (NGF) rescues recognition memory deficits in ADll anti-NGF transgenic mice[J]. Proc Natl Acad Sci U S A, 2005,102(10) : 3811-3816.
  • 5Zhang W, Hao J, Liu R, et al. Soluble Aβ levels correlate with cognitive deficits in the 12-month-old APPswe/PSldE9 mouse modei of Alzheimer's disease[J]. Behav Brain Res, 2011,222(2) : 342-350.
  • 6Sambasivam D, Sivanesan S, Ashok B S, et al. Structural preferences of Aβ fragments in different micellar environments [J]. Neuropeptides, 2011,45(6): 369-376.
  • 7Padayachee E R, Whiteley C G. Etiology of Alzheimer's disease: kinetic, thermodynamic and fluorimetric analyses of interactions of pseudo Aβ-peptides with neuronal nitric oxide synthase[J]. Neuropeptides, 2013,47(5): 321-327.
  • 8Malmsten L, Vijayaraghavan S, Hovatta O, et al. Fibrillar β- amyloid 1 - 42 alters cytokine secretion, cholinergic signalling and neuronal differentiation [J]. J Cell Mol Med, 2014, 18 (9): 1874-1888.
  • 9Fuiiwara N, Shimizu J, Takai K, et al. Restoration of spatial memory dysfunction of human APP transgenic mice by trans- plantation of neuronal precursors derived from human iPS cells [J]. Neurosci Lett, 2013,557 Pt B: 129-134.
  • 10Zhang Z, Hartmann H, Do V M, et al. Destabilization of beta- catenin by mutations in presenilin-1 potentiates neuronal apoptosis [J]. Nature, 1998,395(6703): 698-702.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部