期刊文献+

电沉积ZnO纳米棒阵列及共形结构杂化太阳能电池 被引量:3

Electrodeposited ZnO Nanorod Arrays and the Conformal Hybrid Solar Cells
下载PDF
导出
摘要 采用电沉积法制备出ZnO致密纳米颗粒膜和不同尺寸的纳米棒阵列。通过在ZnO上旋涂P型聚合物聚3-己基噻酚(P3HT)与n型富勒烯衍生物[6,6]-苯基-C61丁酸甲酯(PCBM)的混合物,并蒸镀金属Ag,制备出不同结构的杂化太阳能电池。通过扫描电镜、X射线衍射、光致发光和模拟太阳光光电性能测试,对ZnO的生长条件、晶体形貌及缺陷与太阳能电池性能之间的关系进行了系统研究。结果表明,ZnO的形貌和晶体缺陷的分布对杂化太阳能电池有重要影响.避免共混聚合物与ZnO缺陷聚集区的直接接触可有效消除电流泄漏。在电池结构方面.与ZnO纳米阵列块状结构杂化太阳能电池相比,共形结构的杂化太阳能电池可有效缩短空穴到金属电极的传输距离.增大聚合物与金属电极的接触面积.光电转换效率可提升64%-101%。 ZnO dense grain films and nanorod arrays were prepared by electrodeposition. The hybrid solar cells with different structures were fabricated through spin coating of poly (3-hexylthiophene-2,5-diyl) :[6,6]-phenyl- C61-butyric acid methyl ester (P3HT:PCBM) blend onto the ZnO samples, and evaporating of Ag. The relationship of ZnO growth parameters, morphologies, crystal defects and device performances was studied through scanning electron microscopy, X-ray diffraction, photoluminescence spectra and photovohaic measurements. The results indicated that the morphologies and the location of the defects greatly influenced the solar cell performances. The current leakage can be eliminated by avoiding the direct contact between the polymer blend and the defect accumulation area of ZnO. The conversion efficiency of the nanostructured conformal solar cells improved 64%-101% compared with the bulk one, due to the shorter hole transport route and the larger contact area between the polymer blend and the metal electrode.
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2014年第8期1863-1874,共12页 Chinese Journal of Inorganic Chemistry
基金 国家自然科学基金(No.51202138 51202140 51311130128) 上海市自然科学基金(No.12ZR1410500) 上海高校青年教师培养资助计划 上海大学创新基金(No.2012-120417)资助项目
关键词 ZNO 纳米结构 半导体 电沉积 杂化太阳能电池 共形结构 ZnO nanostructures semiconductors electrodeposition hybrid solar cells conformal structures
  • 相关文献

参考文献39

  • 1Yang Y, Mielczarek K, Aryal M, et al. Acs Nano, 2012,6: 2877-2892.
  • 2Angmo D, Larsen-Olsen T T, Jorgensen M, et al. Adv. Energy Mater., 2013,3:172-175.
  • 3Lange A, Schindler W, Wegener M, et al. J. Nanosci. Nano- Technol., 2013,13:5209-5214.
  • 4Al-Ibrahim M, Ambacher O, Sensfuss S, et al. Appl. Phys. Lett., 2005,86:201120.
  • 5Perzon E, Wang X J, Zhang F L, et al. Synth. Met., 2005, 154:53-56.
  • 6GAOBo-Wen(高博文),GAOChao(高潮),QUEWen-Xiu(阙文修),et al.物理学报,2012,61:194213.
  • 7ZHUOZu-GUO(卓祖亮),ZHANGFu-Jun(张福俊),XUXiao-Wei(许晓伟),et al.物理化学学报,2011,27:875-880.
  • 8Greene L E, Law M, Yuhas B D, et al. J. Phys. Chem. C, 2007,111:18451-18456.
  • 9Woo Choi H, Lee K-S, David Theodore N, et al. Sol. Energy Mater. SoL Cells, 2013,117:273-278.
  • 10Ma Z F, Tang Z, Wang E G, et al. J. Phys. Chem. C, 2012, 116:24462-24468.

同被引文献75

  • 1PAN M C,WU T H,BUI T A,et al.Fabrication of highly c-axis textured ZnO thin films piezoelectric transducers by RF sputtering[J].Journal of Materials Science-Materials in Electronics,2012,23(2):418-424.
  • 2TIAN H L,FAN H Q,GUO H,et al.Solution-based synthesis of ZnO/carbon nanostructures by chemical coupling for high performance gas sensors[J].Sensors and Actuators:B,2014,195 132-139.
  • 3SHI Y T,ZHU C,WANG Y X,et al.A green route and rational design for ZnO-based high-efficiency photovoltaics[J].Nanoscale,2014,6(10):5093-5098.
  • 4CHANG J,AHMED R,WANG H D,et al.ZnO nanocones with high-index{10(1)over-bar1}facets for enhanced energy conversion efficiency of dye-sensitized solar cells[J].Journal of Physical Chemistry:C,2013,117(27):13836-13844.
  • 5YU W D,LI X M,GAO X D.Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates[J].Applied Physics Letters,2004,84(14):2658-2660.
  • 6GALOPPINI E,ROCHFORD J,CHEN H H,et al.Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells[J].Journal of Physical Chemistry:B,2006,110(33):16159-16161.
  • 7WANG J X,SUN X W,YANG Y,et al.Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications[J].Nanotechnology,2006,17(19):4995-4998.
  • 8LI Y,MENG G W,ZHANG L D,et al.Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties[J].Applied Physics Letters,2000,76(15):2011-2013.
  • 9MOFOR A C,EL-SHAER A,SULEIMAN M,et al.A two-step obtainment of quantum confinement in ZnO nanorods[J].Nanotechnology,2006,17(19):4859-4862.
  • 10GAO Y F,NAGAI M.Morphology evolution of ZnO thin films from aqueous solutions and their application to solar cells[J].Langmuir,2006,22(8):3936-3940.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部