摘要
Monte Carlo simulation results are reported on the single event upset(SEU) triggered by the direct ionization effect of low-energy proton. The SEU cross-sections on the 45 nm static random access memory(SRAM) were compared with previous research work, which not only validated the simulation approach used herein, but also exposed the existence of saturated cross-section and the multiple bit upsets(MBUs) when the incident energy was less than 1 MeV. Additionally, it was observed that the saturated cross-section and MBUs are involved with energy loss and critical charge. The amount of deposited charge and the distribution with respect to the critical charge as the supplemental evidence are discussed.
Monte Carlo simulation results are reported on the single event upset (SEU) triggered by the direct ionization effect of low-energy proton. The SEU cross-sections on the 45 nm static random access memory (SRAM) were compared with previous research work, which not only validated the simulation approach used herein, but also exposed the existence of saturated cross-section and the multiple bit upsets (MBUs) when the incident energy was less than 1 MeV. Additionally, it was observed that the saturated cross-section and MBUs are involved with energy loss and critical charge. The amount of deposited charge and the distribution with respect to the critical charge as the supplemental evidence are discussed.
基金
supported by the National Natural Science Foundation of China(Grant Nos.11179003,10975164,10805062 and 11005134)