期刊文献+

Responses of the circulation and water mass in the Beibu Gulf to the seasonal forcing regimes 被引量:7

Responses of the circulation and water mass in the Beibu Gulf to the seasonal forcing regimes
下载PDF
导出
摘要 In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baroclinic model that was verified by observations, the formation mechanisms were revealed: the circula- tion in the northern Beibu Gulf was triggered by the monsoon wind throughout a year; whereas the southern gulf circulation was driven by the monsoon wind and South China Sea (SCS) circulation in winter and sum- mer, respectively. The force of heat flux and tidal harmonics had a strong effect on the circulation strength and range, as well as the local circulation structures, but these factors did not influence the major circulation structure in the Beibu Gulf. On the other hand, the Beibu Gulf Cold Water Mass (BGCWM) would disappear without the force of heat flux because the seasonal thermocline layer was generated by the input of heat so that the vertical mixing between the upper hot water and lower cold water was blocked. In addition, the wind-induced cyclonic gyre in the northern gulf was favorable to the existence of the BGCWM. However, the coverage area of the BGCWM was increased slightly without the force of the tidal harmonics. When the model was driven by the monthly averaged surface forcing, the circulation structure was changed to some extent, and the coverage area of the BGCWM almost extended outwards 100%, implying the circulation and water mass in the Beibu Gulf had strong responses to the temporal resolution of the surface forces. In the past 20 a, the gulf-scale circulation in the Beibu Gulf has been commonly accepted to be driven by a wind stress or density gradient. However, using three sensitive experiments based on a three-dimensional baroclinic model that was verified by observations, the formation mechanisms were revealed: the circula- tion in the northern Beibu Gulf was triggered by the monsoon wind throughout a year; whereas the southern gulf circulation was driven by the monsoon wind and South China Sea (SCS) circulation in winter and sum- mer, respectively. The force of heat flux and tidal harmonics had a strong effect on the circulation strength and range, as well as the local circulation structures, but these factors did not influence the major circulation structure in the Beibu Gulf. On the other hand, the Beibu Gulf Cold Water Mass (BGCWM) would disappear without the force of heat flux because the seasonal thermocline layer was generated by the input of heat so that the vertical mixing between the upper hot water and lower cold water was blocked. In addition, the wind-induced cyclonic gyre in the northern gulf was favorable to the existence of the BGCWM. However, the coverage area of the BGCWM was increased slightly without the force of the tidal harmonics. When the model was driven by the monthly averaged surface forcing, the circulation structure was changed to some extent, and the coverage area of the BGCWM almost extended outwards 100%, implying the circulation and water mass in the Beibu Gulf had strong responses to the temporal resolution of the surface forces.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第7期1-11,共11页 海洋学报(英文版)
基金 The Guangxi Natural Science Foundation under contract No.2012GXNSFEA053001 the program of"The Beibu Gulf forecast circulation system construction and its application to the coastal pollution transport"
关键词 Princeton ocean model (POM) Beibu Gulf (Gulf of Tonkin) CIRCULATION cold water mass response Princeton ocean model (POM), Beibu Gulf (Gulf of Tonkin), circulation, cold water mass, response
  • 相关文献

参考文献3

二级参考文献9

共引文献46

同被引文献51

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部