期刊文献+

Proof of three conjectures on congruences 被引量:2

Proof of three conjectures on congruences
原文传递
导出
摘要 This paper proves three conjectures on congruences involving central binomial coefficients or Lucas sequences.Let p be an odd prime and let a be a positive integer.It is shown that if p=1(mod 4)or a〉1then [3/4pa]∑k=0≡(2/pa)(mod p^2)where(—)denotes the Jacobi symbol.This confirms a conjecture of the second author.A conjecture of Tauraso is also confirmed by showing that p-1∑k=1 Lk/k^2≡0(mod p) provided p〉5.where the Lucas numbers Lo,L1,L2,...are defined by L_0=2,L1=1 and Ln+1=Ln+Ln-l(n=1,2,3,...).The third theorem states that if p=5 then Fp^a-(p^a/5)mod p^3 can be determined in the following way: p^a-1∑k=0(-1)^k(2k k)≡(p^a/5)(1-2F p^a-(pa/5))(mod p^3)which appeared as a conjecture in a paper of Sun and Tauraso in 2010. This paper proves three conjectures on congruences involving central binomial coefficients or Lucas sequences.Let p be an odd prime and let a be a positive integer.It is shown that if p=1(mod 4)or a>1then where(—)denotes the Jacobi symbol.This confirms a conjecture of the second author.A conjecture of Tauraso is also confirmed by showing that where the Lucas numbers Lo,L_1,L_2,...are defined by L_0=2,L_1=1 and L_n+1=L_n+L_n-l(n=1,2,3,...).The third theorem states that if p=5 then F_p^a-(p^a/5)mod p^3 can be determined in the following way:which appeared as a conjecture in a paper of Sun and Tauraso in 2010.
出处 《Science China Mathematics》 SCIE 2014年第10期2091-2102,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.10901078 and 11171140)
关键词 congruences modulo prime powers Fibonacci numbers Lucas sequences 猜想 证明 同余 Lucas数 雅可比符号 mod 卢卡斯 系数和
  • 相关文献

参考文献2

二级参考文献67

  • 1SUN ZhiWei Department of Mathematics,Nanjing University,Nanjing 210093,China.Binomial coefficients,Catalan numbers and Lucas quotients[J].Science China Mathematics,2010,53(9):2473-2488. 被引量:5
  • 2孙智伟.REDUCTION OF UNKNOWNS IN DIOPHANTINE REPRESENTATIONS[J].Science China Mathematics,1992,35(3):257-269. 被引量:3
  • 3E. B. Vinberg.On some number-theoretic conjectures of V. Arnold[J]. Japanese Journal of Mathematics . 2007 (2)
  • 4Zhi-Wei Sun.On the sum Σ k≡r(modm) ( k n ) and related congruencesand related congruences[J]. Israel Journal of Mathematics . 2002 (1)
  • 5Graham R L,Knuth D E,Patashnik O.Concrete Mathematics. . 1994
  • 6Sun Z W.Binomial coefficients and quadratic fields. Proceedings of the American Mathematical Society . 2006
  • 7Sun Z W.Various congruences involving binomial coefficients and higher-order Catalan numbers. http://arxiv.org/abs/0909.3808 .
  • 8Sun Z W,Tauraso R.New congruences for central binomial coefficients. Advances in Applied Mechanics . 2010
  • 9Sun Z W,Tauraso R.On some new congruences for binomial coefficients. http://arxiv. org/abs/0709.1665 .
  • 10Zhao L L,Pan H,Sun Z W.Some congruences for the second-order Catalan numbers. Proceedings of the American Mathematical Society . 2010

共引文献12

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部