期刊文献+

Hilbert genus fields of biquadratic fields 被引量:1

Hilbert genus fields of biquadratic fields
原文传递
导出
摘要 The Hilbert genus field of the real biquadratic field K=Q(√δ,√d)is described by Yue(2010)and Bae and Yue(2011)explicitly in the case&=2 or p with p=1 mod 4 a prime and d a squarefree positive integer.In this article,we describe explicitly the Hilbert genus field of the imaginary biquadratic field K=Q(√δ,√d),whereδ=-1,-2 or-p with p=3 mod 4 a prime and d any squarefree integer.This completes the explicit construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield of odd class number. The Hilbert genus field of the real biquadratic field K=Q(δ^(1/2),d^(1/2)is described by Yue(2010)and Bae and Yue(2011)explicitly in the case&=2 or p with p=1 mod 4 a prime and d a squarefree positive integer.In this article,we describe explicitly the Hilbert genus field of the imaginary biquadratic field K=Q(δ^(1/2),d^(1/2)),whereδ=-1,-2 or-p with p=3 mod 4 a prime and d any squarefree integer.This completes the explicit construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield of odd class number.
出处 《Science China Mathematics》 SCIE 2014年第10期2111-2122,共12页 中国科学:数学(英文版)
基金 supported by National Key Basic Research Program of China(Grant No.2013CB834202) National Natural Science Foundation of China(Grant No.11171317)
关键词 class group Hilbert symbol Hilbert genus field 希尔伯特 四次 二次域 数量级 整数 平方 显式 奇数
  • 相关文献

参考文献8

  • 1Bae S, Yue Q. Hilbert genus fields of real biquadratic fields. Ramanujan J, 2011, 24: 161-181.
  • 2Conner P E, Hurrelbrink J. Class Number Parity, Ser Pure Math 8. Singapore: World Scientific, 1988.
  • 3Herglotz G. über einen Dirichletschen Satz. Math Z, 1922, 12: 225-261.
  • 4Lang S. Cyclotomic Fields I and Ⅱ. GTM 121. New York: Springer-Verlag, 1990.
  • 5Neukirch J. Class Field Theory. Berlin-Heidelberg-New York-Tokyo: Springer-Verlag, 1986.
  • 6Sime P. Hilbert class fields of real biquadratic fields. J Number Theory, 1995, 50: 154-166.
  • 7Yue Q. The generalized Rédei matrix. Math Z, 2009, 261: 23-37.
  • 8Yue Q. Genus fields of real biquadratic fields. Ramanujan J, 2010, 21: 17-25.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部