期刊文献+

Sparse bivariate polynomial factorization

Sparse bivariate polynomial factorization
原文传递
导出
摘要 Motivated by Sasaki's work on the extended Hensel construction for solving multivariate algebraic equations, we present a generalized Hensel lifting, which takes advantage of sparsity, for factoring bivariate polynomial over the rational number field. Another feature of the factorization algorithm presented in this article is a new recombination method, which can solve the extraneous factor problem before lifting based on numerical linear algebra. Both theoretical analysis and experimental data show that the algorithm is etIicient, especially for sparse bivariate polynomials. Motivated by Sasaki's work on the extended Hensel construction for solving multivariate algebraic equations,we present a generalized Hensel lifting,which takes advantage of sparsity,for factoring bivariate polynomial over the rational number field.Another feature of the factorization algorithm presented in this article is a new recombination method,which can solve the extraneous factor problem before lifting based on numerical linear algebra.Both theoretical analysis and experimental data show that the algorithm is efficient,especially for sparse bivariate polynomials.
出处 《Science China Mathematics》 SCIE 2014年第10期2123-2142,共20页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(GrantNos.91118001 and 11170153) National Key Basic Research Project of China(Grant No.2011CB302400) Chongqing Science and Technology Commission Project(Grant No.cstc2013jjys40001)
关键词 polynomial factorization sparse polynomial generalized Hensel lifting 二元多项式 因式分解 稀疏 数值线性代数 分解算法 代数方程组 有理数域 数据表
  • 相关文献

参考文献62

  • 1Abu Salem F. Factorisation Algorithms for Univariate and Bivariate Polynomials over Finite Fields. PhD thesis.Oxford: Oxford University Computing Laboratory, 2004.
  • 2Abu Salem F. An efficient sparse adaptation of the polytope method over Fp and a record-high binary bivariatefactorisation. J Symbolic Comput, 2008, 43: 311-341.
  • 3Abu Salem F, Gao S, Lauder A G B. Factoring polynomials via polytopes. In: Proceedings of the 2004 internationalsymposium on Symbolic and algebraic computation. Santander: ACM, 2004, 4-11.
  • 4Avenda?o M, Krick T, Sombra M. Factoring bivariate sparse (lacunary) polynomials. J Complexity, 2007, 23: 193-216.
  • 5Belabas K, van Hoeij M, Klüners J, et al. Factoring polynomials over global fields. J Théorie Nombres Bordeaux, 21:15-39, 2009.
  • 6Bernardin L. On bivariate Hensel and its parallelization. In: Proceedings of the 1998 International Symposium onSymbolic and Algebraic Computation. New York: ACM, 96-100, 1998.
  • 7Berthomieu J, Lecerf G. Reduction of bivariate polynomials from convex-dense to dense, with application to factorizations.Math Comput, 2012, 81: 1799-1821.
  • 8Bostan A, Lecerf G, Salvy B, et al. Complexity issues in bivariate polynomial factorization. In: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation. Santander: ACM, 2004, 42-49.
  • 9Bürgisser P, Clausen M, Shokrollahi M A. Algebraic Complexity Theory. New York: Springer, 1997.
  • 10Chattopadhyay A, Grenet B, Koiran P, et al. Factoring bivariate lacunary polynomials without heights. In: Proceedingsof the 2013 International Symposium on Symbolic and Algebraic Computation. Boston: ACM, 2013, 141-148.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部