期刊文献+

A Jacobi-collocation method for solving second kind Fredholm integral equations with weakly singular kernels

A Jacobi-collocation method for solving second kind Fredholm integral equations with weakly singular kernels
原文传递
导出
摘要 In this work,we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels.Particularly,we consider the case when the underlying solutions are sufficiently smooth.In this case,the proposed method leads to a fully discrete linear system.We show that the fully discrete integral operator is stable in both infinite and weighted square norms.Furthermore,we establish that the approximate solution arrives at an optimal convergence order under the two norms.Finally,we give some numerical examples,which confirm the theoretical prediction of the exponential rate of convergence. In this work, we propose a Jacobi-collocation method to solve the second kind linear Fredholm integral equations with weakly singular kernels. Particularly, we consider the case when the underlying solutions are sufficiently smooth. In this case, the proposed method leads to a fully discrete linear system. We show that the fully discrete integral operator is stable in both infinite and weighted square norms. Furthermore, we establish that the approximate solution arrives at an optimal convergence order under the two norms. Finally, we give some numerical examples, which confirm the theoretical prediction of the exponential rate of convergence.
作者 CAI Hao Tao
出处 《Science China Mathematics》 SCIE 2014年第10期2163-2178,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.10901093) National Science Foundation of Shandong Province(Grant No.ZR2013AM006)
关键词 second kind Fredholm integral equations with weakly singular kernels Jacobi-collocation methods stability analysis convergence analysis 第二类Fredholm积分方程 弱奇异核 配点法 求解 线性系统 积分算子 理论预测 全离散
  • 相关文献

参考文献5

二级参考文献78

  • 1YANG JiMing1,& CHEN YanPing2 1College of Science,Hunan Institute of Engineering,Xiangtan 411104,China,2School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China.A priori error analysis of a discontinuous Galerkin approximation for a kind of compressible miscible displacement problems[J].Science China Mathematics,2010,53(10):2679-2696. 被引量:3
  • 2LIU YunXian 1, & SHU Chi-Wang 2 1 School of Mathematics, Shandong University, Jinan 250100, China,2 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models[J].Science China Mathematics,2010,53(12):3255-3278. 被引量:8
  • 3陈仲英,巫斌,许跃生.MULTILEVEL AUGMENTATION METHODS FOR SOLVING OPERATOR EQUATIONS[J].Numerical Mathematics A Journal of Chinese Universities(English Series),2005,14(1):31-55. 被引量:4
  • 4H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
  • 5H. Brunner, 3.P. Kauthen, The numerical solution of two-dimensional Volterra Integral Equation, IMA d. Numer. Anal., 9 (1989), 45-59.
  • 6H. Brunner and T. Tang, Polynomial spline collocation methods for the nonlinear Basset equation, Comput. Math. Appl., 18 (1989), 449-457.
  • 7C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
  • 8L.M. Delves, J.L. Mohanmed, Computational Methods for Integral Equations, Cambridge University Press 1985.
  • 9G.N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147-158.
  • 10H. Fujiwara, High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic, Preprint, RIMS, Kyoto University, 2006.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部