期刊文献+

非线性复合FSVM在设备故障诊断中的应用

Nonlinear FSVM with Multi-kernel Function for Equipment Fault Diagnosis
下载PDF
导出
摘要 为了提高设备故障诊断的精度和准确性,利用模糊支持向量机(fuzzy support vector machine,FSVM),处理设备故障样本中的噪声数据。单个核函数构成的FSVM可以处理单一特征的样本集,但不能满足现有设备故障分析实际应用的需求。本文在现有核函数的基础上,进行复合核函数构建,可以有效解决设备故障样本集异构和分布不规则的特征,并可以对于故障进行有效分析,得到较为诊断准确的研究结果。通过对滚动轴承故障实验数据的分析,证明基于复合核函数的FSVM方法,可以有效提高故障诊断的准确度。该方法相比传统FSVM的分析结果,其故障数据信息利用更加充分,故障诊断准确性有效提高,具有较好的有效性和可行性。 A fuzzy support vector machine (FSVM) is proposed to improve the accuracy of equipment fault diagnosis. FSVM is good at dealing with an equipment fault system or data with ambiguous characters. When equipment fault data have heterogeneous or irregular and uneven distribution characteristics, satisfactory results cannot be obtained by using a traditional FSVM based on single kernel. To overcome this drawback, a FSVM algorithm based on multi-kernel function is proposed to deal with equipment fault diagnosis. By applying this method to the rolling bearing fault diagnosis, the test result shows that this method is superior to an original FSVM and can identify rolling bearing fault patterns more effectively.
出处 《工业工程》 北大核心 2014年第4期139-144,共6页 Industrial Engineering Journal
基金 国家自然科学基金资助项目(71001085)
关键词 非线性 复合核函数 支持向量机 故障诊断 non-linearity multi-kernel function support vector machine equipment fault diagnosis
  • 相关文献

参考文献3

二级参考文献25

  • 1朱燕飞,伍建平,李琦,毛宗源.MISO系统的混合核函数LS-SVM建模[J].控制与决策,2005,20(4):417-420. 被引量:15
  • 2李凌均,韩捷,郝伟,董辛,何正嘉.支持向量数据描述用于机械设备状态评估研究[J].机械科学与技术,2005,24(12):1426-1429. 被引量:22
  • 3薛欣,贺国平.基于多个混合核函数的SVM决策树算法设计[J].计算机工程与应用,2007,43(8):142-144. 被引量:17
  • 4张军峰,胡寿松.基于聚类和支持向量机的非线性时间序列故障预报[J].控制理论与应用,2007,24(1):64-68. 被引量:22
  • 5Tax D J,Ypma A,Duin R W.Support vector data description applied to machine vibration [A]//Proceedings of 5th Annual Conference of the Advanced School for Computing and Imaging[ C ].Heijen, NL, USA, 1999: 398-405.
  • 6Vapnik V N.The nature of statistical learning theory[ M ].New York: Sprin ger-Verlag, 1995.
  • 7OLIVIER D, CYRIL R, ALEXANDRA D, et al. Support Vector Machines (SVM) in Near Infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation [ J]. Chemometrics and Intelligent Laboratory Systems, 2009, 96(1) : 27 -33.
  • 8HUANGA C-M, LEE Y-J, LIN D K J, et al. Model selection for support vector machines via uniform design [ J]. Computational Sta- tistics & Data Analysis, 2007, 52(1) : 335 -346.
  • 9LIANG J J, WU D. A new smooth support vector machine[ C]// AICI'10: Proceedings of the 2010 International Conference on Artificial Intelligence and Computational Intelligence: Part I. Berlin: Springer-Verlag, 2010:266 - 272.
  • 10LAM K C, YU C Y. A multiple kernel learning-based decisionsupport model for contractor pre-qualification [ J]. Automation in Construction, 2011,20(5) : 531 - 536.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部