期刊文献+

一种串联机器人的全局参数优化设计方法 被引量:1

A Global-Parameter Optimal Design Method for Serial Manipulators
下载PDF
导出
摘要 针对串联机器人物理参数方程的非线性导致的只能对串联机器人进行局部优化的问题,提出了一种基于线性矩阵不等式的全局优化方法。该方法从串联机器人机构与控制协同设计的理念出发,通过将非线性动力学方程的求解转化为线性矩阵不等式的优化问题,以消耗能量最小的方式来分析串联机器人指定动作下的动态特性,进而从全局角度来获取质量、几何尺寸、惯量等最优物理参数。用该方法指导4自由度重载机器人样机设计,运行效果验证了该方法的有效性。 To the problems that nonlinear physical-parameter function of serial manipulators led to local optimization,a global optimal method based on linear matrix inequality was proposed. Acording to the ideas of co-work of mechanism and control system,the dynamic characteristics of prescript action were analyzed using minimum energy law by transfering the solution of nonlinear dynamic function to optimization problems of linear matrix inequality. Further, the gloal optimal physical parameters,such as the mass, the geometirc dimenstion, the moment of inertia, were achieved. A 4-DOF heavyload robot was designed by this method,and the operating results verify the effectiveness of the proposed method.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2014年第16期2235-2239,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(61203347) 山东省科技发展计划项目(2012GGC01019)) 山东省自然科学基金资助项目(ZR2012FQ022)
关键词 串联机器人 线性矩阵不等式 优化设计 物理参数 serial robot linear matrix inequality optimal design physical parameter
  • 相关文献

参考文献9

二级参考文献36

  • 1韩明红,邓家禔.复杂工程系统多学科设计优化集成环境研究[J].机械工程学报,2004,40(9):100-105. 被引量:29
  • 2姚燕安,查建中,颜鸿森.机构与控制的协同设计[J].机械工程学报,2004,40(10):1-5. 被引量:15
  • 3朱灯林,姜涛,王安麟,王石刚.柔性机械手结构/控制融合设计[J].机器人,2005,27(1):73-77. 被引量:3
  • 4冯培恩,邱清盈.约束优化神经网络建模和控制策略研究[J].电子学报,1997,25(6):85-90. 被引量:4
  • 5Liu Chang-huan,A comparison of controller design and simulation for an industrial manipulator [J].IEEE Transactions on Industrial Electronics. 1986,33(1): 59-65
  • 6Ogasawara Shinji,Hiramoto Kazuhiko,Doki Hitoshi. Global optimal design of dynamic parameters of robot manipulators [C].Proceedings of the 2007 IEEE International Conference on Control Applications. 2007:307-312
  • 7R. A. Horn and C. R. Johnson, Topics in Matrix Analysis [ M ]. Cambridge University Press, New York, 1991.
  • 8B. Wang and F. Zhang, Schur complements and matrix inequalities of Hadamard products [ J ]. Linear and Multilinear Algebra 43 (1997) 315 - 326.
  • 9S. Liu, Inequalities Involving Hadamard Products of Positive Semidefinite Matrices [ J ]. Journal of Mathematical Analysis and Applications 243 (2000) ,458 - 463.
  • 10F. Zhang, Schur complements and matrix inequalities in the Lowner ordering [ J ]. LinearAlgebra and its Applications 321 (2000)399 -410.

共引文献51

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部