期刊文献+

基于FPGA实现的SIRF模块级流水线设计 被引量:1

The Module-Level Pipelining Design of SIRF Based on FPGA
下载PDF
导出
摘要 针对粒子滤波算法是计算量大、实时性差,难于硬件实现的特点,本文提出了用于目标跟踪问题的样本-重要性-重采样粒子滤波算法(SIRF)的模块级流水线设计方法。SIRF算法最重要的部分是数据中心,它负责处理模块之间大量的数据传输。整个滤波器使用模块级流水线设计,主要包括粒子生成模块、粒子更新模块、重采样模块、输出生成模块,该设计大大简化了设计流程。模块级流水线通过分布式控制器来实现同步执行,该控制器控制各个处理模块的数据生成和传输。最后利用Xilinx FPGA验证了该滤波器的实时性。 The main drawback of particle filter is the large computation and poor real-time performance.Thus,it is difficult to implement by hardware.The design of module-level pipeline is presented,which is based on the sample importance resampling(SIR) particle filter for bearings-only tracking problem.The most important part of SIRF is data center,which is responsible for processing large amount of data transfer among blocks.The entire design of filter is using module-level pipeline which greatly simplifies the design process,including particle generation,particle update,resampling and output generation.The module-level pipeline achieves synchronization through distributed controller which controls the data generation and transmission.Finally,by using Xilinx FPGA,it can verify the real-time performance of the filter.
作者 吴将 朱志宇
出处 《航天控制》 CSCD 北大核心 2014年第4期19-23,36,共6页 Aerospace Control
基金 国家自然基金(61075028) 江苏省"六大人才高峰"第八批高层人才资助项目
关键词 SIRF 模块流水线 目标跟踪 缓冲控制器 FPGA SIRF Module-level pipelining Bearings-only tracking Buffer controller FPGA
  • 相关文献

参考文献5

二级参考文献12

  • 1冯宇石.软件缺陷的积累放大效应和软件阶段评审[J].光电技术应用,2005,20(3):70-74. 被引量:2
  • 2Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampiing methods for Bayesian Filter[J].Statistics and Computing, 2000,10(3): 197-208.
  • 3Gustafsson F, Gunnarsson F, Bergman N,et al.Particle filters for positioning, navigation, and tracking [J]. IEEE Transactions on Signal Processing,2002,50:425-435.
  • 4Haykin S,Huber K,Zhe Chen.Bayesian sequential state estimation for MIMO wireless communications[C].Proceedings of the IEEE,2004:439-454.
  • 5Huang A J.A tutorial on bayesian estimation and tracking techniques applicable to non-linear and non-Gaussian process [R]. MITRE Technique Report,2005.
  • 6Gordon, Salmond D J,Smith AFM.Novel approach to nonlinear/ non-Gaussian Bayesian state estimation[J].IEEE Proceedings F, Radar and Signal Processing, 1993,140(2): 107-113.
  • 7Michael J Quirm. Parallel Programming in C with MPI and OpenMP[M].北京:清华大学出版社,2004.
  • 8Joaquin Miguez. Analysis of parallelizable resampling algorithms for particle filtering[J].IEEE Transactions on Signal Processing,2007,87:3155-3174.
  • 9RogerS Pressman 黄柏素 梅宏.软件工程-实践者的研究方法[M].北京:机械工业出版社,2000.205-234.
  • 10JeffreyL WhittenLonnieD BentleyKevinC.等.系统分析与设计方法[M].北京:机械工业出版社,2004.251-287.

共引文献334

同被引文献3

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部