期刊文献+

基于半实物仿真的风力机变桨距控制实验 被引量:2

Variable Pitch Controlled Experimental Research Based on Wind Turbine Semi-physical Simulation
下载PDF
导出
摘要 为研究风力机功率和载荷随桨距角变化的内在规律以及设计无模型变桨距功率控制器,利用实验室现有风力发电机组资源,设计出计算机与风力机组输入输出接口电路;搭建风力机变桨距控制半实物仿真平台;为验证所开发实验平台的正确性和有效性,自主设计了两个变桨距控制实验项目。通过实验模拟风速,得到了功率和桨叶气动载荷随桨距角变化的关系;设计了无模型变桨距功率控制器并验证了控制器的正确性和有效性。为风力机实验开发和风能与动力工程专业学生实施变桨距控制实验提供了平台。 When pitches are controlled,the output power and blade aerodynamic loads of wind turbine will be all changed.The study considers the internal laws and linkages of power and the load with the change of the pitch angle.Firstly,the input and output peripheral interface circuits of wind turbine are designed and installed in the laboratory.Secondly,semi-physical simulation platform of wind turbine about pitch control is built.Finally two pitch control experiment projects are designed and developed to verify the correctness and effectiveness of the developed experimental platform.Through the simulation of wind speed and the semi physical simulation experiment,the following two experimental results are achieved:(1) the relationship between power and blade aerodynamic load varying with the pitch angle is established; (2) the correctness and effectiveness of model free pitch controller are verified.And experimental platform for the students major in the wind energy and power engineering is provided.
出处 《实验室研究与探索》 CAS 北大核心 2014年第7期4-7,12,共5页 Research and Exploration In Laboratory
基金 国家自然科学基金项目(51267017)
关键词 气动载荷 变桨距 无模型控制 半实物仿真 aerodynamic loading variable pitch model free control semi-physical simulation
  • 相关文献

参考文献16

二级参考文献112

共引文献157

同被引文献44

  • 1吴爱国,段广仁.广义线性系统基于PI观测器鲁棒极点配置分离原理[J].应用数学,2007,20(4):771-776. 被引量:2
  • 2Munteanu I, Bratcu A I, Cutululis N A, et al. Optimal control of wind energy systems: Towards a global approach[M]. Berlin, Germany: Springer, 2008.
  • 3Badihi H, Zhang Y, Hong H. Model reference adaptive fault-tolerant control for a wind turbine against actuator faults[C]//2013 Conference on Control and Fault-Tolerant Systems (SysTol). Piscataway, NJ, USA: IEEE, 2013: 498-503.
  • 4Bianchi F D, Battiata H, Mantz R J. Wind turbine control systems principles modelling and gain scheduling design[M]. Berlin, Germany: Springer, 2006.
  • 5Shamma J S, Athans M. Analysis of gain scheduled control for nonlinear plants[J]. IEEE Transactions on Automatic Control, 1990, 35(8): 898-907.
  • 6Bianchi F D, Mantz R J, Christansen C F. Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models[J]. Control Engineering Practice, 2005, 13(2): 247-255.
  • 7Hallouzi R, Verdult V, Babuska R, et al. Fault detection and identification of actuator faults using linear parameter varying models[C]//16th IFAC Triennial World Congress. Kidlington, UK: IFAC, 2005: 119-124.
  • 8Sloth C, Esbensen T, Stoustrup J. Active and passive fault-tolerant LPV control of wind turbines[C]//IEEE American Control Conference (ACC). Piscataway, NJ, USA: IEEE, 2010: 4640-4646.
  • 9Chen L, Shi F, Patton R. Active FTC for hydraulic pitch system for an off-shore wind turbine[C]//IEEE Conference on Control and Fault-Tolerant Systems (SysTol). Piscataway, NJ, USA: IEEE, 2013: 510-515.
  • 10Osella E, Haimovich H, Seron M M. Fault-tolerant control under controller-driven sampling using a virtual actuator strategy[C]//2013 3rd Australian Control Conference (AUCC). Piscataway, NJ, USA: IEEE, 2013: 289-294.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部