期刊文献+

联合收获机惯性分离室工艺参数优化——基于改进BP神经网络 被引量:1

Optimization of Process Parameters in the Inertia Separation Chamber of Combine Harvester Based on Improved BP Neural Network
下载PDF
导出
摘要 为了确定各因素对惯性分离室的性能的影响,以及寻找最优的参数组合,提出了一种新的BP神经网络的改进方法,对联合收割机惯性分离室的吸运系统压力损失的实验数据进行了拟合,并与二次回归模型方法进行比较。结果表明,改进的BP神经网络的拟合精度明显优于二次回归的拟合精度;同时,通过BP神经网络的优化方法求取了4个参数的最优组合值,为惯性分离室的性能研究提供了一种新的方法。 To determine the effects of various factors on the performance of the inertia separation chamber,and to find the optimal combination of parameters,this paper proposes an improved BP neural network method that had fitted the experimental data of suction system pressure drop in the inertia separation of combine harvester. Compared with the quadratic regression,the results showed that the fitting precision based on improved BP neural network was superior than quadratic regression. The value of the optimal combination of the four parameters was calculated by optimizing BP neural network. This paper provides a new method for the study of the performance of the inertia separation chamber.
出处 《农机化研究》 北大核心 2014年第9期42-46,共5页 Journal of Agricultural Mechanization Research
基金 国家自然科学基金项目(31071331)
关键词 联合收获机 惯性分离室 BP神经网络 二次回归 chamber inertia separation combine harvester BP neural network quadratic regression
  • 相关文献

参考文献2

二级参考文献24

  • 1骆文光.用免耕垄作覆盖技术提高耕地抗旱能力[J].农田水利与小水电,1994(9):21-24. 被引量:3
  • 2骆文光.免耕垄作覆盖技术的水土保持及经济效益分析[J].水土保持通报,1994,14(3):35-38. 被引量:22
  • 3Haykin S. Neural networks, a comprehensive foundation [M]. Macmillan Publishing Company, 113 Sylvan Avenue,Enghwood Cliffs, NJ07632, 1994.
  • 4Jain J M, Mohiuddin K. Artificial neural networks: a tutorial [R]. IEEE Computer, Mar, 1996:31 -44.
  • 5Fiesler E, Beale R. Handbook of Neural Computation [M]. Oxford University Press, 1997.
  • 6Bishop C M. Neural network and their applications [J]. Rev Sci Instrum, 1994, 65:1803 - 1832.
  • 7Zhu M L, Fujita M, Hashimoto N. Application of neural networks to runoff prediction [R]. Stochastic and Statistical Methods in Hydrology and Environmental Engineering, 1994: 205- 216.
  • 8Minns A W, Hall M J. Artificial neural networks as ralnfall-runoff models [J]. Journal of Hydrology Sciences, 1996,41 : 399 - 417.
  • 9Shamseldin A Y. Application of a neural network technique to rainfall-runoff modelling [J]. Journal of Hydrology,1997, 199:272 - 294.
  • 10Dibike Y B, Abbott M B. Application of artificial neural networks to the simulation of a two-dimensional flow [J].Journal of Hydraulic Research, 1999, 37 (4): 435-447.

共引文献41

同被引文献2

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部