期刊文献+

基于BP神经网络及模糊推理的温度预警模型研究 被引量:4

Study on Logistics Temperature Prediction Model Based on BP Neural Network and Fuzzy Inference
下载PDF
导出
摘要 主要研究建立疫苗冷链物流运输过程中的温度监控预警模型,通过优化的BP神经网络算法进行温度的预测,并采用模糊推理进行有效的决策预警,旨在把冷链物流运输中可能产生的损失降到最低;仿真测试阶段通过建构一个隐藏层神经元为13个的优化BP神经网络,在Matlab中进行有效性仿真,训练回归统计R值接近于1,且得出期望输出与实际值相差无几;模糊推理系统采用trapmf隶属函数,通过仿真的规则曲面表明该规则对输入有良好的判断。 This paper is to set up a temperature monitoring and early warning model in the vaccine cold chain logistics process. Through the temperature prediction by using the BP neural network algorithm, and the effective decision--making early warning by using the fuzzy inference. To reduce the possible losses in the cold chain logistics process. In simulation stage, construct a 13 hidden neurons' BP neural network. Through MATLAB simulation, training regression R very close to 1, and the desired output is really close on actual value too; the fuzzy inference system use the trapmf function. The simulation of regular surfaces show that the rules have good judgment.
作者 郑健
出处 《计算机测量与控制》 北大核心 2014年第8期2653-2655,2659,共4页 Computer Measurement &Control
基金 2013年福建省中青年教师教育科研A类项目(JA13435) 2013年莆田市科技项目(2013G16)
关键词 BP神经网络 模糊推理 冷链物流 温度预警 BP neural network fuzzy inference cold--chain logistic temperature warning
  • 相关文献

参考文献5

  • 1李会兵.基于BP神经网络的温度预测方法[J].电子测试.2013(19).
  • 2苏高利,邓芳萍.论基于MATLAB语言的BP神经网络的改进算法[J].科技通报,2003,19(2):130-135. 被引量:170
  • 3茹亮.冷藏车远程感控系统关键技术研究[D].南京:南京邮电大学,2013.
  • 4刘振亮.基于BP神经网络的机电设备温度监测预警管理系统研究[D].太原:太原理工大学,2012.
  • 5张海丰.Matlab神经网络应用设计[M].北京:机械工业出版社,2012.

二级参考文献18

  • 1Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362.
  • 2Neural Network Toolbox User's Guide .The Mathworks,inc. 1999.
  • 3Fahlman S E. Faster-learning variations on back-propagation: an e mpirical study[A].Touretzky D,Hinton G,Sejnowski T. Proceedings of the 1988 C onnectionist Models Summer School[C].Carnegic Mellon University,1988,38~51.
  • 4Jacobs R A. Increased rates of convergence through learning rate adaptation[J]. Neural Networks,1988,1:295~307.
  • 5Shar S, Palmieri F. MEKA-a fast, local algorithm for training feedforwa rd neural networks[A]. Proceedings of the International Joint Conference on Ne ural Networks[C]. IEEE Press, New York, 1990.41~46.
  • 6Watrous R L. Learning algorithms for connectionist network: appli ed gradie nt methods of nonlinear optimization[A]. Proceedings of IEEE International Con ference on Neural Networks[c]. IEEE Press, New York, 1987.619~627.
  • 7Shar S,Palmieri F,Datum M.Optimal filtering algorithms f or fast l earning in feedforward neural networks[J]. Neural Networks,1992, 5(5):779~7 87.
  • 8Martin R,Heinrich B. A Direct Adaptive Method for F aster Backpropagation Learning: The RPROP Algorithrm[A]. Ruspini H. Proceedi ngs of the IEEE Interna t ional Conference on Neural Networks (ICNN)[C]. IEEE Press, New York. 1993.58 6~591.
  • 9Fletcher R,Reeves C M. Function minimization by conjugate gra dients[J]. Computer Journal ,1964,7:149~154.
  • 10Powell MJD. Restart procedures for the conjugate gradient metho d[J]. Mathematical Programming, 1977, 12: 241~254.

共引文献169

同被引文献40

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部