摘要
主要研究建立疫苗冷链物流运输过程中的温度监控预警模型,通过优化的BP神经网络算法进行温度的预测,并采用模糊推理进行有效的决策预警,旨在把冷链物流运输中可能产生的损失降到最低;仿真测试阶段通过建构一个隐藏层神经元为13个的优化BP神经网络,在Matlab中进行有效性仿真,训练回归统计R值接近于1,且得出期望输出与实际值相差无几;模糊推理系统采用trapmf隶属函数,通过仿真的规则曲面表明该规则对输入有良好的判断。
This paper is to set up a temperature monitoring and early warning model in the vaccine cold chain logistics process. Through the temperature prediction by using the BP neural network algorithm, and the effective decision--making early warning by using the fuzzy inference. To reduce the possible losses in the cold chain logistics process. In simulation stage, construct a 13 hidden neurons' BP neural network. Through MATLAB simulation, training regression R very close to 1, and the desired output is really close on actual value too; the fuzzy inference system use the trapmf function. The simulation of regular surfaces show that the rules have good judgment.
出处
《计算机测量与控制》
北大核心
2014年第8期2653-2655,2659,共4页
Computer Measurement &Control
基金
2013年福建省中青年教师教育科研A类项目(JA13435)
2013年莆田市科技项目(2013G16)
关键词
BP神经网络
模糊推理
冷链物流
温度预警
BP neural network
fuzzy inference
cold--chain logistic
temperature warning